IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v29y2004i3p305-317.html
   My bibliography  Save this article

Modeling and scaling of the impulse turbine for wave power applications

Author

Listed:
  • Thakker, Ajit
  • Hourigan, Fergal

Abstract

This paper addresses the dimensional analysis of experimental data for the impulse turbine and the use of that data to create a model to predict the performance characteristics of any size of turbine under a range operating conditions. The model assumes that the performance of the turbine is a function of flow coefficient only. The model is used to compare the performance of different turbines at the scaled-up level and under varying conditions of axial velocity and angular velocity. Also, the model is used to identify the optimum turbine rotational speed, for maximum output power, at practical sizes over a range of input power levels. This paper discusses issues relating to the sizing and optimum operating point of the impulse turbine over variable sea conditions which oblige the turbine to operate over a design range rather than at a single design point and shows how this optimum operating point may be obtained.

Suggested Citation

  • Thakker, Ajit & Hourigan, Fergal, 2004. "Modeling and scaling of the impulse turbine for wave power applications," Renewable Energy, Elsevier, vol. 29(3), pages 305-317.
  • Handle: RePEc:eee:renene:v:29:y:2004:i:3:p:305-317
    DOI: 10.1016/S0960-1481(03)00253-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103002532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(03)00253-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maeda, H & Santhakumar, S & Setoguchi, T & Takao, M & Kinoue, Y & Kaneko, K, 1999. "Performance of an impulse turbine with fixed guide vanesfn2fn2Patent pending. for wave power conversion," Renewable Energy, Elsevier, vol. 17(4), pages 533-547.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.
    2. Saleem, Abdul Samad & Cheema, Taqi Ahmad & Ullah, Rizwan & Ahmad, Sarvat Mushtaq & Chattha, Javed Ahmad & Akbar, Bilal & Park, Cheol Woo, 2020. "Parametric study of single-stage gravitational water vortex turbine with cylindrical basin," Energy, Elsevier, vol. 200(C).
    3. Thakker, A. & Jarvis, J. & Sahed, A., 2009. "Design charts for impulse turbine wave energy extraction using experimental data," Renewable Energy, Elsevier, vol. 34(10), pages 2264-2270.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Peng & Zhang, Yongliang & Chen, Wenchuang, 2023. "Numerical analysis on a self-rectifying impulse turbine with U-shaped duct for oscillating water column wave energy conversion," Energy, Elsevier, vol. 274(C).
    2. Manuel García-Díaz & Bruno Pereiras & Celia Miguel-González & Laudino Rodríguez & Jesús Fernández-Oro, 2021. "CFD Analysis of the Performance of a Double Decker Turbine for Wave Energy Conversion," Energies, MDPI, vol. 14(4), pages 1-19, February.
    3. Thakker, Ajit & Hourigan, Fergal, 2005. "A comparison of two meshing schemes for CFD analysis of the impulse turbine for wave energy applications," Renewable Energy, Elsevier, vol. 30(9), pages 1401-1410.
    4. Pereiras, Bruno & Castro, Francisco & Marjani, Abdelatif el & Rodríguez, Miguel A., 2011. "An improved radial impulse turbine for OWC," Renewable Energy, Elsevier, vol. 36(5), pages 1477-1484.
    5. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
    6. García-Díaz, Manuel & Pereiras, Bruno & Miguel-González, Celia & Rodríguez, Laudino & Fernández-Oro, Jesús, 2021. "Design of a new turbine for OWC wave energy converters: The DDT concept," Renewable Energy, Elsevier, vol. 169(C), pages 404-413.
    7. Correia da Fonseca, F.X. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Oscillating flow rig for air turbine testing," Renewable Energy, Elsevier, vol. 142(C), pages 373-382.
    8. Thakker, Ajit & Hourigan, Fergal, 2005. "Computational fluid dynamics analysis of a 0.6m, 0.6 hub-to-tip ratio impulse turbine with fixed guide vanes," Renewable Energy, Elsevier, vol. 30(9), pages 1387-1399.
    9. Badhurshah, Rameez & Samad, Abdus, 2015. "Multiple surrogate based optimization of a bidirectional impulse turbine for wave energy conversion," Renewable Energy, Elsevier, vol. 74(C), pages 749-760.
    10. Yongyao Luo & Alexandre Presas & Zhengwei Wang, 2019. "Numerical Analysis of the Influence of Design Parameters on the Efficiency of an OWC Axial Impulse Turbine for Wave Energy Conversion," Energies, MDPI, vol. 12(5), pages 1-12, March.
    11. Lorenzo Ciappi & Lapo Cheli & Irene Simonetti & Alessandro Bianchini & Giampaolo Manfrida & Lorenzo Cappietti, 2020. "Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots," Energies, MDPI, vol. 13(21), pages 1-28, October.
    12. Badhurshah, Rameez & Dudhgaonkar, Prasad & Jalihal, Purnima & Samad, Abdus, 2018. "High efficiency design of an impulse turbine used in oscillating water column to harvest wave energy," Renewable Energy, Elsevier, vol. 121(C), pages 344-354.
    13. Thakker, A. & Dhanasekaran, T.S., 2004. "Computed effects of tip clearance on performance of impulse turbine for wave energy conversion," Renewable Energy, Elsevier, vol. 29(4), pages 529-547.
    14. Suchithra, R. & Ezhilsabareesh, K. & Samad, Abdus, 2019. "Optimization based higher order sliding mode controller for efficiency improvement of a wave energy converter," Energy, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:29:y:2004:i:3:p:305-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.