IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i7p1469-1474.html
   My bibliography  Save this article

Technical comparison of a CHP using various blends of gasohol in an IC engine

Author

Listed:
  • Ameri, Mohammad
  • Ghobadian, Barat
  • Baratian, Iman

Abstract

The effects of bioethanol addition to gasoline on an combined heat and power with internal combustion engine (ICECHP) are investigated experimentally and theoretically. In the theoretical study, a multi-zone spark ignition (SI) engine model is developed. This model was initially developed for gasoline fueled SI engine. However, it was adapted for SI engines running on gasoline–bioethanol blend. Experimental applications have been carried out with the gasoline fuel and the model results have been validated. Using the theoretical model, effects of bioethanol addition to gasoline on output temperature, flow availability, and efficiency are investigated. The results have shown when the bioethanol blend increases, the maximum cylinder pressure and temperature increase and carbon monoxide volume percentage reduces. Also, as the bioethanol blend increases, the availability of the flue gas increases as well. It is shown that among the various blends of gasohol, E20 has the maximum availability for heat recovery. The results of the efficiency investigation have shown that the efficiency of CHP is higher than the efficiency of separate heat and power (SHP) production. In fact, if the bioethanol blend in gasohol increases, the efficiency of the CHP system increases as well. It has been shown that E20 has the largest efficiency of ICECHP using gasohol.

Suggested Citation

  • Ameri, Mohammad & Ghobadian, Barat & Baratian, Iman, 2008. "Technical comparison of a CHP using various blends of gasohol in an IC engine," Renewable Energy, Elsevier, vol. 33(7), pages 1469-1474.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:7:p:1469-1474
    DOI: 10.1016/j.renene.2007.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107002911
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bayraktar, Hakan, 2005. "Experimental and theoretical investigation of using gasoline–ethanol blends in spark-ignition engines," Renewable Energy, Elsevier, vol. 30(11), pages 1733-1747.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amin Nedayali & Alireza Shirneshan, 2016. "Experimental Study of the Effects of Biodiesel on the Performance of a Diesel Power Generator," Energy & Environment, , vol. 27(5), pages 553-565, August.
    2. Hosseini, Seyed Ehsan & Andwari, Amin Mahmoudzadeh & Wahid, Mazlan Abdul & Bagheri, Ghobad, 2013. "A review on green energy potentials in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 533-545.
    3. Ghobadian, Barat, 2012. "Liquid biofuels potential and outlook in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4379-4384.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    2. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, R. & Ebadi, M.T. & Yusaf, Talal, 2019. "Characterization of biodiesel production (ultrasonic-assisted) from evening-primroses (Oenothera lamarckiana) as novel feedstock and its effect on CI engine parameters," Renewable Energy, Elsevier, vol. 130(C), pages 50-60.
    3. Süleyman Şimşek & Hasan Saygın & Bülent Özdalyan, 2020. "Improvement of Fusel Oil Features and Effect of Its Use in Different Compression Ratios for an SI Engine on Performance and Emission," Energies, MDPI, vol. 13(7), pages 1-14, April.
    4. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    5. Hernandez, Marcel & Menchaca, Lizette & Mendoza, Alberto, 2014. "Fuel economy and emissions of light-duty vehicles fueled with ethanol–gasoline blends in a Mexican City," Renewable Energy, Elsevier, vol. 72(C), pages 236-242.
    6. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    7. Ravagnani, Mauro A.S.S. & Thonern, Werner I. & Caballero, Jose A., 2007. "A mathematical model for the composition of Brazilian ethanol shares for exportation to be blended to gasoline," Energy Policy, Elsevier, vol. 35(10), pages 5060-5063, October.
    8. Deshmukh, Minal & Pathan, Aadil, 2024. "Bambusa tulda: A potential feedstock for bioethanol and its blending effects on the performance of spark ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. García, Carlos A. & Manzini, Fabio & Islas, Jorge, 2010. "Air emissions scenarios from ethanol as a gasoline oxygenate in Mexico City Metropolitan Area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3032-3040, December.
    10. Paolo Iodice & Massimo Cardone, 2021. "Ethanol/Gasoline Blends as Alternative Fuel in Last Generation Spark-Ignition Engines: A Review on CO and HC Engine Out Emissions," Energies, MDPI, vol. 14(13), pages 1-18, July.
    11. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.
    12. Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Belachew Tesfa & Fengshou Gu & Rakesh Mishra & Andrew Ball, 2014. "Emission Characteristics of a CI Engine Running with a Range of Biodiesel Feedstocks," Energies, MDPI, vol. 7(1), pages 1-17, January.
    14. Ali Qasemian & Sina Jenabi Haghparast & Pouria Azarikhah & Meisam Babaie, 2021. "Effects of Compression Ratio of Bio-Fueled SI Engines on the Thermal Balance and Waste Heat Recovery Potential," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    15. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    16. Suleyman Simsek & Bulent Ozdalyan, 2018. "Improvements to the Composition of Fusel Oil and Analysis of the Effects of Fusel Oil–Gasoline Blends on a Spark-Ignited (SI) Engine’s Performance and Emissions," Energies, MDPI, vol. 11(3), pages 1-13, March.
    17. Catapano, F. & Di Iorio, S. & Magno, A. & Sementa, P. & Vaglieco, B.M., 2015. "A comprehensive analysis of the effect of ethanol, methane and methane-hydrogen blend on the combustion process in a PFI (port fuel injection) engine," Energy, Elsevier, vol. 88(C), pages 101-110.
    18. Kun-Ho Chen & Yei-Chin Chao, 2019. "Characterization of Performance of Short Stroke Engines with Valve Timing for Blended Bioethanol Internal Combustion," Energies, MDPI, vol. 12(4), pages 1-13, February.
    19. Koç, Mustafa & Sekmen, Yakup & Topgül, Tolga & Yücesu, Hüseyin Serdar, 2009. "The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine," Renewable Energy, Elsevier, vol. 34(10), pages 2101-2106.
    20. Thakur, Amit Kumar & Kaviti, Ajay Kumar & Mehra, Roopesh & Mer, K.K.S., 2017. "Progress in performance analysis of ethanol-gasoline blends on SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 324-340.

    More about this item

    Keywords

    Bioethanol; CHP; ICE; Gasohol;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:7:p:1469-1474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.