IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i4p682-693.html
   My bibliography  Save this article

Experimental characterisation of a thermal energy storage system using temperature and power controlled charging

Author

Listed:
  • Mawire, A.
  • McPherson, M.

Abstract

The experimental set-up and technical aspects for charging a thermal energy storage (TES) of a proposed solar cooker at constant temperature and variable electrical power are presented. The TES is developed using a packed pebble bed. An electrical hot plate simulates the concentrator which heats up oil circulating through a copper coil absorber charging the TES system. A computer program to acquire data for monitoring the storage system and to maintain a nearly constant outlet charging temperature is developed using Visual Basic. The input power to the hot plate is also controlled to simulate the variation of the daily solar radiation by using another Visual Basic program. A combined internal model control (IMC) and proportional, integral and derivative (PID) temperature control structure is tested on the TES system under varying conditions and its performance is reasonable within a few degrees of the set temperature points. Results of the charging experiments are used to characterise the storage system. The different experiments indicate various degrees of stratification in the storage tank.

Suggested Citation

  • Mawire, A. & McPherson, M., 2008. "Experimental characterisation of a thermal energy storage system using temperature and power controlled charging," Renewable Energy, Elsevier, vol. 33(4), pages 682-693.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:4:p:682-693
    DOI: 10.1016/j.renene.2007.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107001322
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ekechukwu, O.V & Ugwuoke, N.T, 2003. "Design and measured performance of a plane reflector augmented box-type solar-energy cooker," Renewable Energy, Elsevier, vol. 28(12), pages 1935-1952.
    2. Chaabene, M. & Annabi, M., 1997. "A dynamic model for predicting solar plant performance and optimum control," Energy, Elsevier, vol. 22(6), pages 567-578.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mlatho, J.S.P. & McPherson, M. & Mawire, A. & Van den Heetkamp, R.J.J., 2010. "Determination of the spatial extent of the focal point of a parabolic dish reflector using a red laser diode," Renewable Energy, Elsevier, vol. 35(9), pages 1982-1990.
    2. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Mawire, A. & McPherson, M. & van den Heetkamp, R.R.J. & Taole, S.H., 2010. "Experimental volumetric heat transfer characteristics between oil and glass pebbles in a small glass tube storage," Energy, Elsevier, vol. 35(3), pages 1256-1263.
    4. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    5. Oyirwoth P. Abedigamba & Sayuni F. Mndeme & Ashmore Mawire & Musa Rukaaya, 2023. "Heat Utilization Characteristics of Two Sensible Heat Storage Vegetable Oils for Domestic Applications," Sustainability, MDPI, vol. 15(8), pages 1-11, April.
    6. Mawire, Ashmore & Taole, Simeon H., 2011. "A comparison of experimental thermal stratification parameters for an oil/pebble-bed thermal energy storage (TES) system during charging," Applied Energy, Elsevier, vol. 88(12), pages 4766-4778.
    7. Lizarraga-Garcia, Enrique & Mitsos, Alexander, 2014. "Effect of heat transfer structures on thermoeconomic performance of solid thermal storage," Energy, Elsevier, vol. 68(C), pages 896-909.
    8. Li, Meng-Jie & Qiu, Yu & Li, Ming-Jia, 2018. "Cyclic thermal performance analysis of a traditional Single-Layered and of a novel Multi-Layered Packed-Bed molten salt Thermocline Tank," Renewable Energy, Elsevier, vol. 118(C), pages 565-578.
    9. Jegadheeswaran, S. & Pohekar, S.D. & Kousksou, T., 2010. "Exergy based performance evaluation of latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2580-2595, December.
    10. Mawire, A. & McPherson, M. & Heetkamp, R.R.J. van den & Mlatho, S.J.P., 2009. "Simulated performance of storage materials for pebble bed thermal energy storage (TES) systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1246-1252, July.
    11. Sun, Peng & Teng, Yun & Chen, Zhe, 2021. "Robust coordinated optimization for multi-energy systems based on multiple thermal inertia numerical simulation and uncertainty analysis," Applied Energy, Elsevier, vol. 296(C).
    12. Mawire, Ashmore, 2013. "Experimental and simulated thermal stratification evaluation of an oil storage tank subjected to heat losses during charging," Applied Energy, Elsevier, vol. 108(C), pages 459-465.
    13. Xinming Xi & Zicheng Zhang & Huimin Wei & Zeyu Chen & Xiaoze Du, 2023. "Experimental Study of Simultaneous Charging and Discharging Process in Thermocline Phase Change Heat Storage System Based on Solar Energy," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    14. Sciacovelli, A. & Gagliardi, F. & Verda, V., 2015. "Maximization of performance of a PCM latent heat storage system with innovative fins," Applied Energy, Elsevier, vol. 137(C), pages 707-715.
    15. Li, Meng-Jie & Li, Ming-Jia & Xue, Xiao-Dai & Li, Dong, 2022. "Optimization and design criterion of the shell-and-tube thermal energy storage with cascaded PCMs under the constraint of outlet threshold temperature," Renewable Energy, Elsevier, vol. 181(C), pages 1371-1385.
    16. Mawire, A. & McPherson, M. & van den Heetkamp, R.R.J., 2009. "Thermal performance of a small oil-in-glass tube thermal energy storage system during charging," Energy, Elsevier, vol. 34(7), pages 838-849.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    2. Lahkar, Pranab J. & Samdarshi, S.K., 2010. "A review of the thermal performance parameters of box type solar cookers and identification of their correlations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1615-1621, August.
    3. Shamshirgaran, Seyed Reza & Khalaji Assadi, Morteza & Badescu, Viorel & Al-Kayiem, Hussain H., 2018. "Upper limits for the work extraction by nanofluid-filled selective flat-plate solar collectors," Energy, Elsevier, vol. 160(C), pages 875-885.
    4. Chaabene, Maher & Ben Ammar, Mohsen, 2008. "Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems," Renewable Energy, Elsevier, vol. 33(7), pages 1435-1443.
    5. Ozoegwu, Chigbogu G. & Akpan, Patrick U., 2021. "A review and appraisal of Nigeria's solar energy policy objectives and strategies against the backdrop of the renewable energy policy of the Economic Community of West African States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    7. Kumar, Subodh, 2005. "Estimation of design parameters for thermal performance evaluation of box-type solar cooker," Renewable Energy, Elsevier, vol. 30(7), pages 1117-1126.
    8. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "State of the art of solar cooking: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3776-3785.
    9. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    10. Purohit, Ishan, 2010. "Testing of solar cookers and evaluation of instrumentation error," Renewable Energy, Elsevier, vol. 35(9), pages 2053-2064.
    11. Al-Soud, Mohammed S. & Abdallah, Essam & Akayleh, Ali & Abdallah, Salah & Hrayshat, Eyad S., 2010. "A parabolic solar cooker with automatic two axes sun tracking system," Applied Energy, Elsevier, vol. 87(2), pages 463-470, February.
    12. Sagade, Atul A. & Samdarshi, S.K. & Lahkar, P.J. & Sagade, Narayani A., 2020. "Experimental determination of the thermal performance of a solar box cooker with a modified cooking pot," Renewable Energy, Elsevier, vol. 150(C), pages 1001-1009.
    13. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    14. Saxena, Abhishek & Varun & Pandey, S.P. & Srivastav, G., 2011. "A thermodynamic review on solar box type cookers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3301-3318, August.
    15. Al-Nehari, Hamoud A. & Mohammed, Mahmoud A. & Odhah, Abdulkarem A. & Al-attab, K.A. & Mohammed, Bakeel K. & Al-Habari, Abdulwahab M. & Al-Fahd, Nasr H., 2021. "Experimental and numerical analysis of tiltable box-type solar cooker with tracking mechanism," Renewable Energy, Elsevier, vol. 180(C), pages 954-965.
    16. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    17. Seyed Reza Shamshirgaran & Hussain H. Al-Kayiem & Korada V. Sharma & Mostafa Ghasemi, 2020. "State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment," Sustainability, MDPI, vol. 12(21), pages 1-52, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:4:p:682-693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.