IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v32y2007i14p2361-2368.html
   My bibliography  Save this article

Effect of advanced injection timing on emission characteristics of diesel engine running on natural gas

Author

Listed:
  • Nwafor, O.M.I.

Abstract

There has been a growing concern on the emission of greenhouse gases into the atmosphere, whose consequence is global warming. The sources of greenhouse gases have been identified, of which the major contributor is the combustion of fossil fuel. Researchers have intensified efforts towards identifying greener alternative fuel substitutes for the present fossil fuel. Natural gas is now being investigated as potential alternative fuel for diesel engines. Natural gas appears more attractive due to its high octane number and perhaps, due to its environmental friendly nature. The test results showed that alternative fuels exhibit longer ignition delay, with slow burning rates. Longer delays will lead to unacceptable rates of pressure rise with the result of diesel knock. This work examines the effect of advanced injection timing on the emission characteristics of dual-fuel engine. The engine has standard injection timing of 30° BTDC. The injection was first advanced by 5.5° and given injection timing of 35.5° BTDC. The engine performance was erratic on this timing. The injection was then advanced by 3.5°. The engine performance was smooth on this timing especially at low loading conditions. The ignition delay was reduced through advanced injection timing but tended to incur a slight increase in fuel consumption. The CO and CO2 emissions were reduced through advanced injection timing.

Suggested Citation

  • Nwafor, O.M.I., 2007. "Effect of advanced injection timing on emission characteristics of diesel engine running on natural gas," Renewable Energy, Elsevier, vol. 32(14), pages 2361-2368.
  • Handle: RePEc:eee:renene:v:32:y:2007:i:14:p:2361-2368
    DOI: 10.1016/j.renene.2006.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810600348X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2006.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nwafor, O.M.I. & Rice, G., 1994. "Combustion characteristics and performance of natural gas in high speed indirect injection diesel engine," Renewable Energy, Elsevier, vol. 5(5), pages 841-848.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheenkachorn, Kraipat & Poompipatpong, Chedthawut & Ho, Choi Gyeung, 2013. "Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas)," Energy, Elsevier, vol. 53(C), pages 52-57.
    2. Alagumalai, Avinash, 2014. "Internal combustion engines: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 561-571.
    3. Salman Abdu Ahmed & Song Zhou & Yuanqing Zhu & Asfaw Solomon Tsegay & Yoming Feng & Naseem Ahmad & Adil Malik, 2020. "Effects of Pig Manure and Corn Straw Generated Biogas and Methane Enriched Biogas on Performance and Emission Characteristics of Dual Fuel Diesel Engines," Energies, MDPI, vol. 13(4), pages 1-23, February.
    4. Md Arman Arefin & Md Nurun Nabi & Md Washim Akram & Mohammad Towhidul Islam & Md Wahid Chowdhury, 2020. "A Review on Liquefied Natural Gas as Fuels for Dual Fuel Engines: Opportunities, Challenges and Responses," Energies, MDPI, vol. 13(22), pages 1-19, November.
    5. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan, 2019. "Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends," Energy, Elsevier, vol. 174(C), pages 386-406.
    6. Barik, Debabrata & Murugan, S. & Sivaram, N.M. & Baburaj, E. & Shanmuga Sundaram, P., 2017. "Experimental investigation on the behavior of a direct injection diesel engine fueled with Karanja methyl ester-biogas dual fuel at different injection timings," Energy, Elsevier, vol. 118(C), pages 127-138.
    7. Namasivayam, A.M. & Korakianitis, T. & Crookes, R.J. & Bob-Manuel, K.D.H. & Olsen, J., 2010. "Biodiesel, emulsified biodiesel and dimethyl ether as pilot fuels for natural gas fuelled engines," Applied Energy, Elsevier, vol. 87(3), pages 769-778, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selim, Mohamed Y.E, 2001. "Pressure–time characteristics in diesel engine fueled with natural gas," Renewable Energy, Elsevier, vol. 22(4), pages 473-489.
    2. Nwafor, O.M.I, 2000. "Effect of choice of pilot fuel on the performance of natural gas in diesel engines," Renewable Energy, Elsevier, vol. 21(3), pages 495-504.
    3. Sahoo, B.B. & Sahoo, N. & Saha, U.K., 2009. "Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines--A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1151-1184, August.
    4. Maizonnasse, Mark & Plante, Jean-Sébastien & Oh, David & Laflamme, Claude B., 2013. "Investigation of the degradation of a low-cost untreated biogas engine using preheated biogas with phase separation for electric power generation," Renewable Energy, Elsevier, vol. 55(C), pages 501-513.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:32:y:2007:i:14:p:2361-2368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.