IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i7-8p1043-1054.html
   My bibliography  Save this article

Break-even analysis and size optimization of a PV/wind hybrid energy conversion system with battery storage - A case study

Author

Listed:
  • Ekren, Orhan
  • Ekren, Banu Y.
  • Ozerdem, Baris

Abstract

This paper aims to show an optimum sizing procedure of autonomous PV/wind hybrid energy system with battery storage and a break-even analysis of this system and extension of transmission line. We use net present value (NPV) method for the comparison of autonomous hybrid energy system and extension of transmission line cases. The case study is completed for the satisfaction of the electricity consumption of global system for mobile communication base station (GSM) at Izmir Institute of Technology Campus Area, Urla, Izmir, Turkey. First, we optimize the PV/wind energy system using response surface methodology (RSM) which is a collection of statistical and mathematical methods relying on optimization of response surface with design parameters. As a result of RSM, the optimum PV area, wind turbine rotor swept area, and battery capacity are obtained as 3.95Â m2, 29.4Â m2, 31.92Â kWÂ h, respectively. These results led to $37,033.9 hybrid energy system cost. Second, break-even analysis is done to be able to decide the optimum distance where the hybrid energy system is more economical than the extension of the transmission line. The result shows that, if the distance between national electricity network and the GSM base station location where the hybrid energy system is assumed to be installed is at a distance more than 4817Â m, the installation of hybrid energy system is more economical than the electricity network.

Suggested Citation

  • Ekren, Orhan & Ekren, Banu Y. & Ozerdem, Baris, 2009. "Break-even analysis and size optimization of a PV/wind hybrid energy conversion system with battery storage - A case study," Applied Energy, Elsevier, vol. 86(7-8), pages 1043-1054, July.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1043-1054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00246-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panis, Renato P. & Myers, Raymond H. & Houck, Ernest C., 1994. "Combining regression diagnostics with simulation metamodels," European Journal of Operational Research, Elsevier, vol. 73(1), pages 85-94, February.
    2. Kleijnen, Jack P. C., 1995. "Verification and validation of simulation models," European Journal of Operational Research, Elsevier, vol. 82(1), pages 145-162, April.
    3. Yang, H.X. & Lu, L. & Burnett, J., 2003. "Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong," Renewable Energy, Elsevier, vol. 28(11), pages 1813-1824.
    4. Ashok, S., 2007. "Optimised model for community-based hybrid energy system," Renewable Energy, Elsevier, vol. 32(7), pages 1155-1164.
    5. Kleijnen, Jack P. C. & Sargent, Robert G., 2000. "A methodology for fitting and validating metamodels in simulation," European Journal of Operational Research, Elsevier, vol. 120(1), pages 14-29, January.
    6. Bakos, G. C. & Soursos, M., 2002. "Techno-economic assessment of a stand-alone PV/hybrid installation for low-cost electrification of a tourist resort in Greece," Applied Energy, Elsevier, vol. 73(2), pages 183-193, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekren, Orhan & Ekren, Banu Yetkin, 2008. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology," Applied Energy, Elsevier, vol. 85(11), pages 1086-1101, November.
    2. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    3. Noguera, Jose H. & Watson, Edward F., 2006. "Response surface analysis of a multi-product batch processing facility using a simulation metamodel," International Journal of Production Economics, Elsevier, vol. 102(2), pages 333-343, August.
    4. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    5. Tunali, S. & Batmaz, I., 2003. "A metamodeling methodology involving both qualitative and quantitative input factors," European Journal of Operational Research, Elsevier, vol. 150(2), pages 437-450, October.
    6. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using Particle Swarm Optimization," Renewable Energy, Elsevier, vol. 63(C), pages 194-204.
    7. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    8. Ekren, Orhan & Ekren, Banu Y., 2010. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing," Applied Energy, Elsevier, vol. 87(2), pages 592-598, February.
    9. Reis dos Santos, M. Isabel & Porta Nova, Acacio M.O., 2006. "Statistical fitting and validation of non-linear simulation metamodels: A case study," European Journal of Operational Research, Elsevier, vol. 171(1), pages 53-63, May.
    10. Celik, A.N., 2007. "Effect of different load profiles on the loss-of-load probability of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 32(12), pages 2096-2115.
    11. Stinstra, E., 2006. "The meta-model approach for simulation-based design optimization," Other publications TiSEM 713f828a-4716-4a19-af00-e, Tilburg University, School of Economics and Management.
    12. Ekren, Banu Y. & Ekren, Orhan, 2009. "Simulation based size optimization of a PV/wind hybrid energy conversion system with battery storage under various load and auxiliary energy conditions," Applied Energy, Elsevier, vol. 86(9), pages 1387-1394, September.
    13. Thapar, Vinay & Agnihotri, Gayatri & Sethi, Vinod Krishna, 2011. "Critical analysis of methods for mathematical modelling of wind turbines," Renewable Energy, Elsevier, vol. 36(11), pages 3166-3177.
    14. Clazien J. De Vos & Helmut W. Saatkamp & Mirjam Nielen & Ruud B. M. Huirne, 2006. "Sensitivity Analysis to Evaluate the Impact of Uncertain Factors in a Scenario Tree Model for Classical Swine Fever Introduction," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1311-1322, October.
    15. Saheb-Koussa, D. & Haddadi, M. & Belhamel, M., 2009. "Economic and technical study of a hybrid system (wind-photovoltaic-diesel) for rural electrification in Algeria," Applied Energy, Elsevier, vol. 86(7-8), pages 1024-1030, July.
    16. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    17. Rostirolla, G. & Grange, L. & Minh-Thuyen, T. & Stolf, P. & Pierson, J.M. & Da Costa, G. & Baudic, G. & Haddad, M. & Kassab, A. & Nicod, J.M. & Philippe, L. & Rehn-Sonigo, V. & Roche, R. & Celik, B. &, 2022. "A survey of challenges and solutions for the integration of renewable energy in datacenters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Batmaz, Inci & Tunali, Semra, 2003. "Small response surface designs for metamodel estimation," European Journal of Operational Research, Elsevier, vol. 145(2), pages 455-470, March.
    19. Kleijnen, J.P.C., 1997. "Experimental Design for Sensitivity Analysis, Optimization and Validation of Simulation Models," Discussion Paper 1997-52, Tilburg University, Center for Economic Research.
    20. Kosmas A. Kavadias & Panagiotis Triantafyllou, 2021. "Hybrid Renewable Energy Systems’ Optimisation. A Review and Extended Comparison of the Most-Used Software Tools," Energies, MDPI, vol. 14(24), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1043-1054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.