IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v31y2006i14p2272-2283.html
   My bibliography  Save this article

Adoption of photovoltaic power supply systems: A study of key determinants in India

Author

Listed:
  • Peter, Raja
  • Dickie, Laurence
  • Peter, Vasanthi M.

Abstract

This paper examines the key determinants that foster the adoption of photovoltaic (PV) power supply systems. The authors provide empirical evidence which suggest that ‘government initiatives’ and institutional ‘finance’ are important influencers of the decision to adopt PV power supply systems in developing countries. In order to diffuse PV technology it is also necessary to provide decision-makers with opportunities for direct and vicarious experience of PV systems through ‘demonstration sites’. These factors have been ignored in earlier models of the innovation–decision process formulated by Rogers and the new innovation-decision framework proposed by Kaplan. Governments need to play a leadership role, and this coupled with the availability of Finance and Demonstration Sites will result in an increased interest leading to the adoption of PV technology in India. This research has led to the identification of variables such as the government initiatives, demonstration sites and finance, which are critical to the adoption of PV systems in developing countries like India. The research provided empirical evidence that is currently lacking in the area of adoption of PV technology in developing countries.

Suggested Citation

  • Peter, Raja & Dickie, Laurence & Peter, Vasanthi M., 2006. "Adoption of photovoltaic power supply systems: A study of key determinants in India," Renewable Energy, Elsevier, vol. 31(14), pages 2272-2283.
  • Handle: RePEc:eee:renene:v:31:y:2006:i:14:p:2272-2283
    DOI: 10.1016/j.renene.2005.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148105003344
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Islam, Saifull & Huda, Ain-Ul, 1999. "Technical note Proper utilization of solar energy in Bangladesh: effect on the environment, food supply and the standard of living," Renewable Energy, Elsevier, vol. 17(2), pages 255-263.
    2. Sayigh, Ali, 1999. "Renewable energy -- the way forward," Applied Energy, Elsevier, vol. 64(1-4), pages 15-30, September.
    3. Oliver, M. & Jackson, T., 1999. "The market for solar photovoltaics," Energy Policy, Elsevier, vol. 27(7), pages 371-385, July.
    4. Peter, Raja & Ramaseshan, B & Nayar, C.V, 2002. "Conceptual model for marketing solar based technology to developing countries," Renewable Energy, Elsevier, vol. 25(4), pages 511-524.
    5. Carmody, Ellie R. & Sarkar, Amin U., 1997. "Solar box cookers: Towards a decentralized sustainable energy strategy for sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 1(4), pages 291-301, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shih-Yuan & Perng, Yeng-Horng & Ho, Yu-Feng, 2013. "The effect of renewable energy application on Taiwan buildings: What are the challenges and strategies for solar energy exploitation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 92-106.
    2. Khan, Tahsina & Khanam, Shamsun Nahar & Rahman, Md Habibur & Rahman, Syed Mahbubur, 2019. "Determinants of microfinance facility for installing solar home system (SHS) in rural Bangladesh," Energy Policy, Elsevier, vol. 132(C), pages 299-308.
    3. Chiung-Wen Hsu, 2014. "Key Factors and Recommendations for Adopting Renewable Energy Systems by Families and Firms," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 13(1), pages 39-58, June.
    4. Syed Shah Alam & Maisarah Ahmad & Abdullah Sanusi Othman & Zullina Bt Hussain Shaari & Mohammad Masukujjaman, 2021. "Factors Affecting Photovoltaic Solar Technology Usage Intention among Households in Malaysia: Model Integration and Empirical Validation," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    5. Yuehong Lu & Zafar A. Khan & Manuel S. Alvarez-Alvarado & Yang Zhang & Zhijia Huang & Muhammad Imran, 2020. "A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources," Sustainability, MDPI, vol. 12(12), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter, Raja & Ramaseshan, B & Nayar, C.V, 2002. "Conceptual model for marketing solar based technology to developing countries," Renewable Energy, Elsevier, vol. 25(4), pages 511-524.
    2. Purohit, Pallav, 2009. "CO2 emissions mitigation potential of solar home systems under clean development mechanism in India," Energy, Elsevier, vol. 34(8), pages 1014-1023.
    3. Wamukonya, Njeri, 2007. "Solar home system electrification as a viable technology option for Africa's development," Energy Policy, Elsevier, vol. 35(1), pages 6-14, January.
    4. Otte, Pia Piroschka, 2013. "Solar cookers in developing countries—What is their key to success?," Energy Policy, Elsevier, vol. 63(C), pages 375-381.
    5. Rosendahl, Knut Einar, 2004. "Cost-effective environmental policy: implications of induced technological change," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1099-1121, November.
    6. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    7. Yasser Maklad, 2014. "Quantification and Costing of Domestic Electricity Generation for Armidale, New South Wales, Australia Utilising Micro Wind Turbines," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 208-219.
    8. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    9. Liu, H. & Jiang, G.M. & Zhuang, H.Y. & Wang, K.J., 2008. "Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1402-1418, June.
    10. Cui, Guodong & Zhang, Liang & Ren, Bo & Enechukwu, Chioma & Liu, Yanmin & Ren, Shaoran, 2016. "Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2: Heat mining rate and salt precipitation effects," Applied Energy, Elsevier, vol. 183(C), pages 837-852.
    11. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    12. Dunstan, D. & Probert, D., 2002. "Raising the effectiveness of electricity generation (per unit of fossil-fuel combusted) by less conventional means," Applied Energy, Elsevier, vol. 73(2), pages 103-138, October.
    13. Naik, Hardik & Baredar, Prashant & Kumar, Anil, 2017. "Medium temperature application of concentrated solar thermal technology: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 369-378.
    14. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    15. Yasser Maklad, 2014. "Sizing and Costing Optimisation of a Typical Wind/PV Hybrid Electricity Generation System for a Typical Residential Building in Urban Armidale NSW, Australia," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 163-168.
    16. Gaul, Chip & Carley, Sanya, 2012. "Solar set asides and renewable electricity certificates: Early lessons from North Carolina's experience with its renewable portfolio standard," Energy Policy, Elsevier, vol. 48(C), pages 460-469.
    17. Cheng, Wen-Long & Liu, Jian & Nian, Yong-Le & Wang, Chang-Long, 2016. "Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs," Energy, Elsevier, vol. 109(C), pages 537-545.
    18. Mseddi, Amina & Le Ballois, Sandrine & Aloui, Helmi & Vido, Lionel, 2019. "Robust control of a wind conversion system based on a hybrid excitation synchronous generator: A comparison between H∞ and CRONE controllers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 453-476.
    19. Tina, Giuseppe Marco & Gagliano, Salvina, 2011. "Probabilistic modelling of hybrid solar/wind power system with solar tracking system," Renewable Energy, Elsevier, vol. 36(6), pages 1719-1727.
    20. Martin, Nigel J. & Rice, John L., 2012. "Developing renewable energy supply in Queensland, Australia: A study of the barriers, targets, policies and actions," Renewable Energy, Elsevier, vol. 44(C), pages 119-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:31:y:2006:i:14:p:2272-2283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.