IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v30y2005i7p1055-1074.html
   My bibliography  Save this article

Empirical approach to BIPV evaluation of solar irradiation for building applications

Author

Listed:
  • Cheng, C.L.
  • Chan, C.Y.
  • Chen, C.L.

Abstract

The integrated photovoltaic system building design (BIPV) is becoming popular among architects and design engineers. This paper reports on an empirical approach for BIPV applications in building design. A brief description of the theory and mechanism is given followed by experimental and numerical validation. The procedures and estimation methodology conducted in previous research is documented. The investigation procedures and devices employed are described and the experimental results are illustrated. Statistical analysis and regression functions are employed to simplify the solar irradiation estimation procedure. The framework for evaluating building solar irradiation applications is described in detail. Conclusions are drawn regarding the BIPV evaluation operational characteristics for building solar energy applications as a simplified approach for architects and design engineers. The results with local parameters can be used to estimate the tilted planes for BIPV application.

Suggested Citation

  • Cheng, C.L. & Chan, C.Y. & Chen, C.L., 2005. "Empirical approach to BIPV evaluation of solar irradiation for building applications," Renewable Energy, Elsevier, vol. 30(7), pages 1055-1074.
  • Handle: RePEc:eee:renene:v:30:y:2005:i:7:p:1055-1074
    DOI: 10.1016/j.renene.2004.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148104003635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2004.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olmo, F.J & Vida, J & Foyo, I & Castro-Diez, Y & Alados-Arboledas, L, 1999. "Prediction of global irradiance on inclined surfaces from horizontal global irradiance," Energy, Elsevier, vol. 24(8), pages 689-704.
    2. Oliver, M. & Jackson, T., 2001. "Energy and economic evaluation of building-integrated photovoltaics," Energy, Elsevier, vol. 26(4), pages 431-439.
    3. Robledo, Luis & soler, Alfonso, 1998. "Modelling irradiance on inclined planes with an anisotropic model," Energy, Elsevier, vol. 23(3), pages 193-201.
    4. Wenxian, Lin & Wenfeng, Gao & Shaoxuan, Pu & Enrong, Lu, 1995. "Ratios of global radiation on a tilted to horizontal surface for Yunnan Province, China," Energy, Elsevier, vol. 20(8), pages 723-728.
    5. Wolfe, Jean & Conibeer, Gavin, 1998. "The scolar programme for photovoltaics in the U.K," Renewable Energy, Elsevier, vol. 15(1), pages 598-601.
    6. Ruiz, Enrique & Soler, Alfonso & Robledo, Luis, 2002. "Comparison of the Olmo model with global irradiance measurements on vertical surfaces at Madrid," Energy, Elsevier, vol. 27(10), pages 975-986.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayod-Rújula, Angel A. & Ortego-Bielsa, Abel & Martínez-Gracia, Amaya, 2011. "Photovoltaics on flat roofs: Energy considerations," Energy, Elsevier, vol. 36(4), pages 1996-2010.
    2. Portolan dos Santos, Ísis & Rüther, Ricardo, 2014. "Limitations in solar module azimuth and tilt angles in building integrated photovoltaics at low latitude tropical sites in Brazil," Renewable Energy, Elsevier, vol. 63(C), pages 116-124.
    3. Cheng, C.L. & Chan, C.Y. & Chen, C.L., 2006. "An empirical approach to estimating monthly radiation on south-facing tilted planes for building application," Energy, Elsevier, vol. 31(14), pages 2940-2957.
    4. Cheng, C.L. & Sanchez Jimenez, Charles S. & Lee, Meng-Chieh, 2009. "Research of BIPV optimal tilted angle, use of latitude concept for south orientated plans," Renewable Energy, Elsevier, vol. 34(6), pages 1644-1650.
    5. Chang, Tian Pau, 2009. "Output energy of a photovoltaic module mounted on a single-axis tracking system," Applied Energy, Elsevier, vol. 86(10), pages 2071-2078, October.
    6. Agathokleous, Rafaela A. & Kalogirou, Soteris A., 2020. "Status, barriers and perspectives of building integrated photovoltaic systems," Energy, Elsevier, vol. 191(C).
    7. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    8. Lee, M.C. & Kuo, C.H. & Wang, F.J., 2016. "Utilizing the building envelope for power generation and conservation," Energy, Elsevier, vol. 97(C), pages 1-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, C.L. & Chan, C.Y. & Chen, C.L., 2006. "An empirical approach to estimating monthly radiation on south-facing tilted planes for building application," Energy, Elsevier, vol. 31(14), pages 2940-2957.
    2. Notton, Gilles & Paoli, Christophe & Vasileva, Siyana & Nivet, Marie Laure & Canaletti, Jean-Louis & Cristofari, Christian, 2012. "Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks," Energy, Elsevier, vol. 39(1), pages 166-179.
    3. Dahmani, Kahina & Dizene, Rabah & Notton, Gilles & Paoli, Christophe & Voyant, Cyril & Nivet, Marie Laure, 2014. "Estimation of 5-min time-step data of tilted solar global irradiation using ANN (Artificial Neural Network) model," Energy, Elsevier, vol. 70(C), pages 374-381.
    4. Notton, Gilles & Paoli, Christophe & Ivanova, Liliana & Vasileva, Siyana & Nivet, Marie Laure, 2013. "Neural network approach to estimate 10-min solar global irradiation values on tilted planes," Renewable Energy, Elsevier, vol. 50(C), pages 576-584.
    5. Evseev, Efim G. & Kudish, Avraham I., 2009. "An assessment of a revised Olmo et al. model to predict solar global radiation on a tilted surface at Beer Sheva, Israel," Renewable Energy, Elsevier, vol. 34(1), pages 112-119.
    6. García, Ignacio & de Blas, Marian & Hernández, Begoña & Sáenz, Carlos & Torres, José Luis, 2021. "Diffuse irradiance on tilted planes in urban environments: Evaluation of models modified with sky and circumsolar view factors," Renewable Energy, Elsevier, vol. 180(C), pages 1194-1209.
    7. de Jesus, Ábio Xavier Cardoso & Pinheiro Neto, Daywes & Domingues, Elder Geraldo, 2023. "Computational tool for technical-economic analysis of photovoltaic microgeneration in Brazil," Energy, Elsevier, vol. 271(C).
    8. Ayvazoğluyüksel, Özge & Filik, Ümmühan Başaran, 2018. "Estimation methods of global solar radiation, cell temperature and solar power forecasting: A review and case study in Eskişehir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 639-653.
    9. de Simón-Martín, Miguel & Alonso-Tristán, Cristina & Díez-Mediavilla, Montserrat, 2017. "Diffuse solar irradiance estimation on building's façades: Review, classification and benchmarking of 30 models under all sky conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 783-802.
    10. Grażyna Frydrychowicz-Jastrzębska & Artur Bugała, 2015. "Modeling the Distribution of Solar Radiation on a Two-Axis Tracking Plane for Photovoltaic Conversion," Energies, MDPI, vol. 8(2), pages 1-17, January.
    11. Muzathik, A.M. & Ibrahim, M.Z. & Samo, K.B. & Wan Nik, W.B., 2011. "Estimation of global solar irradiation on horizontal and inclined surfaces based on the horizontal measurements," Energy, Elsevier, vol. 36(2), pages 812-818.
    12. Ruiz, Enrique & Soler, Alfonso & Robledo, Luis, 2002. "Comparison of the Olmo model with global irradiance measurements on vertical surfaces at Madrid," Energy, Elsevier, vol. 27(10), pages 975-986.
    13. Koster, Daniel & Minette, Frank & Braun, Christian & O'Nagy, Oliver, 2019. "Short-term and regionalized photovoltaic power forecasting, enhanced by reference systems, on the example of Luxembourg," Renewable Energy, Elsevier, vol. 132(C), pages 455-470.
    14. Milad Zeraatpisheh & Reza Arababadi & Mohsen Saffari Pour, 2018. "Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs," Energies, MDPI, vol. 11(12), pages 1-19, November.
    15. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2008. "Solar radiation modelling for the simulation of photovoltaic systems," Renewable Energy, Elsevier, vol. 33(5), pages 1109-1120.
    16. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    17. Halasah, Suleiman A. & Pearlmutter, David & Feuermann, Daniel, 2013. "Field installation versus local integration of photovoltaic systems and their effect on energy evaluation metrics," Energy Policy, Elsevier, vol. 52(C), pages 462-471.
    18. Cannavale, Alessandro & Ierardi, Laura & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Improving energy and visual performance in offices using building integrated perovskite-based solar cells: A case study in Southern Italy," Applied Energy, Elsevier, vol. 205(C), pages 834-846.
    19. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    20. Lu, Ning & Qin, Jun & Yang, Kun & Sun, Jiulin, 2011. "A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data," Energy, Elsevier, vol. 36(5), pages 3179-3188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:30:y:2005:i:7:p:1055-1074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.