IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v29y2004i4p517-528.html
   My bibliography  Save this article

Promoting applications of hybrid (wind+photovoltaic+diesel+battery) power systems in hot regions

Author

Listed:
  • Elhadidy, M.A.
  • Shaahid, S.M.

Abstract

Depleting oil and gas reserves, combined with growing concerns of atmospheric pollution/degradation, have made the search for energy from renewable sources of energy, such as solar and wind, inevitable. Literature indicates that commercial/residential buildings in Saudi Arabia consume an estimated 10–40% of the total electric energy generated. In the present study, hourly mean wind-speed and solar radiation data for the period 1986–1997 recorded at the solar radiation and meteorological monitoring station, Dhahran (26°32′ N, 50°13′ E), Saudi Arabia, have been analyzed to investigate the potential of utilizing hybrid (wind+solar) energy conversion systems to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620 000 kWh). The monthly average wind speeds for Dhahran range from 4.1 to 6.4 m/s. The monthly average daily values of solar radiation for Dhahran range from 3.6 kWh/m2 to 7.96 kWh/m2. The hybrid systems considered in the present analysis consist of different combinations of commercial 10 kW wind energy conversion systems (WECS), photovoltaic (PV) panels supplemented with battery storage unit and diesel back-up. The study shows that with 30 10-kW WECS together with 150 m2 PV, and 3 days of battery storage, the diesel back-up system has to provide 17% of the load demand. However, in the absence of battery storage, about 38% of the load needs to be provided by the diesel system.

Suggested Citation

  • Elhadidy, M.A. & Shaahid, S.M., 2004. "Promoting applications of hybrid (wind+photovoltaic+diesel+battery) power systems in hot regions," Renewable Energy, Elsevier, vol. 29(4), pages 517-528.
  • Handle: RePEc:eee:renene:v:29:y:2004:i:4:p:517-528
    DOI: 10.1016/j.renene.2003.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103002805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2003.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ulf Hansen, 1998. "Technological Options for Power Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 63-87.
    2. Nayar, C.V. & Thomas, F.P. & Phillips, S.J. & James, W.L., 1991. "Design considerations for appropriate wind energy systems in developing countries," Renewable Energy, Elsevier, vol. 1(5), pages 713-722.
    3. Elhadidy, M.a & Shaahid, S.M, 1999. "Optimal sizing of battery storage for hybrid (wind+diesel) power systems," Renewable Energy, Elsevier, vol. 18(1), pages 77-86.
    4. Elhadidy, M.A. & Shaahid, S.M., 2000. "Parametric study of hybrid (wind + solar + diesel) power generating systems," Renewable Energy, Elsevier, vol. 21(2), pages 129-139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Haoran & Xia, Yanghong & Hu, Zhiyuan & Wei, Wei, 2024. "Optimum pulse electrolysis for efficiency enhancement of hydrogen production by alkaline water electrolyzers," Applied Energy, Elsevier, vol. 358(C).
    2. Khare, Vikas & Nema, Savita & Baredar, Prashant, 2016. "Solar–wind hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 23-33.
    3. Daniel Coles & Athanasios Angeloudis & Zoe Goss & Jon Miles, 2021. "Tidal Stream vs. Wind Energy: The Value of Cyclic Power When Combined with Short-Term Storage in Hybrid Systems," Energies, MDPI, vol. 14(4), pages 1-17, February.
    4. Dihrab, Salwan S. & Sopian, K., 2010. "Electricity generation of hybrid PV/wind systems in Iraq," Renewable Energy, Elsevier, vol. 35(6), pages 1303-1307.
    5. Varun & Prakash, Ravi & Bhat, Inder Krishnan, 2009. "Energy, economics and environmental impacts of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2716-2721, December.
    6. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    7. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    8. Phuangpornpitak, N. & Kumar, S., 2011. "User acceptance of diesel/PV hybrid system in an island community," Renewable Energy, Elsevier, vol. 36(1), pages 125-131.
    9. Sharples, Steve & Radhi, Hassan, 2013. "Assessing the technical and economic performance of building integrated photovoltaics and their value to the GCC society," Renewable Energy, Elsevier, vol. 55(C), pages 150-159.
    10. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    12. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    13. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    14. Liu, Pei & Pistikopoulos, Efstratios N. & Li, Zheng, 2010. "An energy systems engineering approach to the optimal design of energy systems in commercial buildings," Energy Policy, Elsevier, vol. 38(8), pages 4224-4231, August.
    15. Bernal-Agustín, José L. & Dufo-López, Rodolfo & Rivas-Ascaso, David M., 2006. "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, Elsevier, vol. 31(14), pages 2227-2244.
    16. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elhadidy, M.A., 2002. "Performance evaluation of hybrid (wind/solar/diesel) power systems," Renewable Energy, Elsevier, vol. 26(3), pages 401-413.
    2. Elhadidy, M.A & Shaahid, S.M, 2004. "Role of hybrid (wind+diesel) power systems in meeting commercial loads," Renewable Energy, Elsevier, vol. 29(1), pages 109-118.
    3. Shaahid, S.M. & Elhadidy, M.A., 2003. "Opportunities for utilization of stand-alone hybrid (photovoltaic + diesel + battery) power systems in hot climates," Renewable Energy, Elsevier, vol. 28(11), pages 1741-1753.
    4. Shaahid, S.M. & Elhadidy, M.A., 2008. "Economic analysis of hybrid photovoltaic-diesel-battery power systems for residential loads in hot regions--A step to clean future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 488-503, February.
    5. Shaahid, S.M. & Al-Hadhrami, L.M. & Rahman, M.K., 2013. "Economic feasibility of development of wind power plants in coastal locations of Saudi Arabia – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 589-597.
    6. Shaahid, S.M. & Elhadidy, M.A., 2004. "Prospects of autonomous/stand-alone hybrid (photo-voltaic + diesel + battery) power systems in commercial applications in hot regions," Renewable Energy, Elsevier, vol. 29(2), pages 165-177.
    7. Shaahid, S.M., 2011. "Review of research on autonomous wind farms and solar parks and their feasibility for commercial loads in hot regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3877-3887.
    8. Shaahid, S.M. & Elhadidy, M.A., 2007. "Technical and economic assessment of grid-independent hybrid photovoltaic-diesel-battery power systems for commercial loads in desert environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1794-1810, October.
    9. Elhadidy, M.A. & Shaahid, S.M., 2000. "Parametric study of hybrid (wind + solar + diesel) power generating systems," Renewable Energy, Elsevier, vol. 21(2), pages 129-139.
    10. Shaahid, S.M. & El-Amin, I., 2009. "Techno-economic evaluation of off-grid hybrid photovoltaic-diesel-battery power systems for rural electrification in Saudi Arabia--A way forward for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 625-633, April.
    11. Salas, V. & Suponthana, W. & Salas, R.A., 2015. "Overview of the off-grid photovoltaic diesel batteries systems with AC loads," Applied Energy, Elsevier, vol. 157(C), pages 195-216.
    12. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    13. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    14. Celik, A.N., 2006. "A simplified model for estimating yearly wind fraction in hybrid-wind energy systems," Renewable Energy, Elsevier, vol. 31(1), pages 105-118.
    15. Sudhanshu Ranjan & Smriti Jaiswal & Abdul Latif & Dulal Chandra Das & Nidul Sinha & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Isolated and Interconnected Multi-Area Hybrid Power Systems: A Review on Control Strategies," Energies, MDPI, vol. 14(24), pages 1-20, December.
    16. Chong, W.T. & Naghavi, M.S. & Poh, S.C. & Mahlia, T.M.I. & Pan, K.C., 2011. "Techno-economic analysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application," Applied Energy, Elsevier, vol. 88(11), pages 4067-4077.
    17. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2009. "Simulation and optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2111-2118, October.
    18. Celik, A.N., 2003. "A simplified model for estimating the monthly performance of autonomous wind energy systems with battery storage," Renewable Energy, Elsevier, vol. 28(4), pages 561-572.
    19. Ma, Tao & Yang, Hongxing & Lu, Lin, 2013. "Performance evaluation of a stand-alone photovoltaic system on an isolated island in Hong Kong," Applied Energy, Elsevier, vol. 112(C), pages 663-672.
    20. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:29:y:2004:i:4:p:517-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.