IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i1p125-131.html
   My bibliography  Save this article

User acceptance of diesel/PV hybrid system in an island community

Author

Listed:
  • Phuangpornpitak, N.
  • Kumar, S.

Abstract

This paper presents the results of a study conducted at a rural (island) community to understand the role of PV hybrid system installed on an island. Until 2004, most islanders had installed diesel generators in their homes to generate electricity, which was directly supplied to appliances or stored in the batteries for later use. A field survey was carried out to study the user satisfaction of the PV hybrid system in the island community. The attitude of islanders to the PV hybrid system was mostly positive. The islanders can use more electricity, the supply of which can meet the demand. A comparison of pollutions before and after installation of the PV hybrid system was made along with the interviews with the users. The data show that the users are highly satisfied with the PV hybrid system which can reduce environmental impact, especially air and noise pollutions. New opportunities as a result of access to electric service include studying and reading at night that were not possible earlier. All the islanders use the PV hybrid system and more importantly, no one found that the system made their life worse as compared to the earlier state of affairs.

Suggested Citation

  • Phuangpornpitak, N. & Kumar, S., 2011. "User acceptance of diesel/PV hybrid system in an island community," Renewable Energy, Elsevier, vol. 36(1), pages 125-131.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:1:p:125-131
    DOI: 10.1016/j.renene.2010.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110002636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jager, Wander, 2006. "Stimulating the diffusion of photovoltaic systems: A behavioural perspective," Energy Policy, Elsevier, vol. 34(14), pages 1935-1943, September.
    2. Shaahid, S.M. & Elhadidy, M.A., 2007. "Technical and economic assessment of grid-independent hybrid photovoltaic-diesel-battery power systems for commercial loads in desert environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1794-1810, October.
    3. Reinders, A. H. M. E. & Pramusito & Sudradjat, A. & van Dijk, V. A. P. & Mulyadi, R. & Turkenburg, W. C., 1999. "Sukatani revisited: on the performance of nine-year-old solar home systems and street lighting systems in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 3(1), pages 1-47, March.
    4. Roe, Brian & Teisl, Mario F. & Levy, Alan & Russell, Matthew, 2001. "US consumers' willingness to pay for green electricity," Energy Policy, Elsevier, vol. 29(11), pages 917-925, September.
    5. Phuangpornpitak, N. & Kumar, S., 2007. "PV hybrid systems for rural electrification in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1530-1543, September.
    6. Zoulias, E.I. & Lymberopoulos, N., 2007. "Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems," Renewable Energy, Elsevier, vol. 32(4), pages 680-696.
    7. Shaahid, S.M. & Elhadidy, M.A., 2004. "Prospects of autonomous/stand-alone hybrid (photo-voltaic + diesel + battery) power systems in commercial applications in hot regions," Renewable Energy, Elsevier, vol. 29(2), pages 165-177.
    8. Cabraal, A. & Cosgrove-Davies, M. & Schaeffer, L., 1996. "Best Practices for Photovoltaic Household Electrification Programs: Lessons from Experiences in Selected Countries," Papers 324, World Bank - Technical Papers.
    9. Shaahid, S.M. & Elhadidy, M.A., 2003. "Opportunities for utilization of stand-alone hybrid (photovoltaic + diesel + battery) power systems in hot climates," Renewable Energy, Elsevier, vol. 28(11), pages 1741-1753.
    10. Gossling, Stefan & Kunkel, Timo & Schumacher, Kim & Heck, Nadine & Birkemeyer, Johannes & Froese, Jens & Naber, Nils & Schliermann, Elke, 2005. "A target group-specific approach to "green" power retailing: students as consumers of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(1), pages 69-83, February.
    11. Chaurey, Akanksha & Ranganathan, Malini & Mohanty, Parimita, 2004. "Electricity access for geographically disadvantaged rural communities--technology and policy insights," Energy Policy, Elsevier, vol. 32(15), pages 1693-1705, October.
    12. Elhadidy, M.A. & Shaahid, S.M., 2004. "Promoting applications of hybrid (wind+photovoltaic+diesel+battery) power systems in hot regions," Renewable Energy, Elsevier, vol. 29(4), pages 517-528.
    13. Nomura, Noboru & Akai, Makoto, 2004. "Willingness to pay for green electricity in Japan as estimated through contingent valuation method," Applied Energy, Elsevier, vol. 78(4), pages 453-463, August.
    14. Gupta, C. L., 2003. "Role of renewable energy technologies in generating sustainable livelihoods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 155-174, April.
    15. Ellegård, Anders & Arvidson, Anders & Nordström, Mattias & Kalumiana, Oscar S & Mwanza, Clotilda, 2004. "Rural people pay for solar: experiences from the Zambia PV-ESCO project," Renewable Energy, Elsevier, vol. 29(8), pages 1251-1263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
    2. Alessandro Corsini & Luca Cedola & Francesca Lucchetta & Eileen Tortora, 2019. "Gen-Set Control in Stand-Alone/RES Integrated Power Systems," Energies, MDPI, vol. 12(17), pages 1-17, August.
    3. Shaahid, S.M. & Al-Hadhrami, L.M. & Rahman, M.K., 2014. "Review of economic assessment of hybrid photovoltaic-diesel-battery power systems for residential loads for different provinces of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 174-181.
    4. Ribó-Pérez, David & Bastida-Molina, Paula & Gómez-Navarro, Tomás & Hurtado-Pérez, Elías, 2020. "Hybrid assessment for a hybrid microgrid: A novel methodology to critically analyse generation technologies for hybrid microgrids," Renewable Energy, Elsevier, vol. 157(C), pages 874-887.
    5. Bigdeli, Nooshin, 2015. "Optimal management of hybrid PV/fuel cell/battery power system: A comparison of optimal hybrid approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 377-393.
    6. Muhumuza, Ronald & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn & Pugsley, Adrian, 2018. "Energy consumption levels and technical approaches for supporting development of alternative energy technologies for rural sectors of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 90-102.
    7. A. K. Pandey & B. Kalidasan & R. Reji Kumar & Saidur Rahman & V. V. Tyagi & Krismadinata & Zafar Said & P. Abdul Salam & Dranreb Earl Juanico & Jamal Uddin Ahamed & Kamal Sharma & M. Samykano & S. K. , 2022. "Solar Energy Utilization Techniques, Policies, Potentials, Progresses, Challenges and Recommendations in ASEAN Countries," Sustainability, MDPI, vol. 14(18), pages 1-26, September.
    8. Elizabeth Baldwin & Jennifer N. Brass & Sanya Carley & Lauren M. MacLean, 2015. "Electrification and rural development: issues of scale in distributed generation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(2), pages 196-211, March.
    9. Smith, Cameron & Burrows, John & Scheier, Eric & Young, Amberli & Smith, Jessica & Young, Tiffany & Gheewala, Shabbir H., 2015. "Comparative Life Cycle Assessment of a Thai Island's diesel/PV/wind hybrid microgrid," Renewable Energy, Elsevier, vol. 80(C), pages 85-100.
    10. Agustín Valverde Granja & Teófilo Miguel De Souza & Pedro Magalhães Sobrinho & Daniel Felipe Arévalo Santos, 2018. "Study of Power Quality at the Point of Common Coupling of a Low Voltage Grid and a Distributed Generation System of 7.8 kWp in a Tropical Region," Energies, MDPI, vol. 11(6), pages 1-19, June.
    11. Fazelpour, Farivar & Soltani, Nima & Rosen, Marc A., 2014. "Feasibility of satisfying electrical energy needs with hybrid systems for a medium-size hotel on Kish Island, Iran," Energy, Elsevier, vol. 73(C), pages 856-865.
    12. Kumar, Rakesh & Rosen, Marc A., 2011. "A critical review of photovoltaic–thermal solar collectors for air heating," Applied Energy, Elsevier, vol. 88(11), pages 3603-3614.
    13. Kallel, Randa & Boukettaya, Ghada & Krichen, Lotfi, 2015. "Demand side management of household appliances in stand-alone hybrid photovoltaic system," Renewable Energy, Elsevier, vol. 81(C), pages 123-135.
    14. Ramli, Makbul A.M. & Hiendro, Ayong & Twaha, Ssennoga, 2015. "Economic analysis of PV/diesel hybrid system with flywheel energy storage," Renewable Energy, Elsevier, vol. 78(C), pages 398-405.
    15. Yilmaz, Saban & Ozcalik, Hasan Riza & Kesler, Selami & Dincer, Furkan & Yelmen, Bekir, 2015. "The analysis of different PV power systems for the determination of optimal PV panels and system installation—A case study in Kahramanmaras, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1015-1024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    2. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    3. Mewton, Ross T. & Cacho, Oscar J., 2011. "Green Power voluntary purchases: Price elasticity and policy analysis," Energy Policy, Elsevier, vol. 39(1), pages 377-385, January.
    4. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
    5. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    6. Dagher, Leila & Bird, Lori & Heeter, Jenny, 2017. "Residential green power demand in the United States," Renewable Energy, Elsevier, vol. 114(PB), pages 1062-1068.
    7. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2009. "Simulation and optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2111-2118, October.
    8. Carsten Herbes & Lorenz Braun & Dennis Rube, 2016. "Pricing of Biomethane Products Targeted at Private Households in Germany—Product Attributes and Providers’ Pricing Strategies," Energies, MDPI, vol. 9(4), pages 1-15, March.
    9. Gustavsson, Mathias, 2007. "With time comes increased loads—An analysis of solar home system use in Lundazi, Zambia," Renewable Energy, Elsevier, vol. 32(5), pages 796-813.
    10. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    11. Torsten J. Gerpott & Ilaha Mahmudova, 2010. "Determinants of price mark‐up tolerance for green electricity – lessons for environmental marketing strategies from a study of residential electricity customers in Germany," Business Strategy and the Environment, Wiley Blackwell, vol. 19(5), pages 304-318, July.
    12. Gracia, Azucena & Barreiro-Hurlé, Jesús & Pérez y Pérez, Luis, 2012. "Can renewable energy be financed with higher electricity prices? Evidence from a Spanish region," Energy Policy, Elsevier, vol. 50(C), pages 784-794.
    13. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    14. Ebers Broughel, Anna, 2019. "On the ground in sunny Mexico: A case study of consumer perceptions and willingness to pay for solar-powered devices," World Development Perspectives, Elsevier, vol. 15(C), pages 1-1.
    15. Lim, Kyoung-Min & Lim, Seul-Ye & Yoo, Seung-Hoon, 2014. "Estimating the economic value of residential electricity use in the Republic of Korea using contingent valuation," Energy, Elsevier, vol. 64(C), pages 601-606.
    16. Zorić, Jelena & Hrovatin, Nevenka, 2012. "Household willingness to pay for green electricity in Slovenia," Energy Policy, Elsevier, vol. 47(C), pages 180-187.
    17. Garces-Voisenat, Juan-Pedro & Mukherjee, Zinnia, 2016. "Paying for green energy: The case of the Chilean Patagonia," Journal of Policy Modeling, Elsevier, vol. 38(2), pages 397-414.
    18. Motz, Alessandra, 2021. "Consumer acceptance of the energy transition in Switzerland: The role of attitudes explained through a hybrid discrete choice model," Energy Policy, Elsevier, vol. 151(C).
    19. Alberini, Anna & Ščasný, Milan & Bigano, Andrea, 2018. "Policy- v. individual heterogeneity in the benefits of climate change mitigation: Evidence from a stated-preference survey," Energy Policy, Elsevier, vol. 121(C), pages 565-575.
    20. Shin, Jungwoo & Woo, JongRoul & Huh, Sung-Yoon & Lee, Jongsu & Jeong, Gicheol, 2014. "Analyzing public preferences and increasing acceptability for the Renewable Portfolio Standard in Korea," Energy Economics, Elsevier, vol. 42(C), pages 17-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:1:p:125-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.