IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124017610.html
   My bibliography  Save this article

Upgrading gasoline production through optimizing zeolite properties in the direct hydrogenation of CO2/CO

Author

Listed:
  • Parra, Onintze
  • Portillo, Ander
  • Tabernilla, Zuria
  • Aguayo, Andrés T.
  • Ereña, Javier
  • Bilbao, Javier
  • Ateka, Ainara

Abstract

Role of HZSM-5 zeolite properties (in tandem with ZnO–ZrO2) in direct synthesis of C5+ hydrocarbons from CO2/CO was studied. The runs were performed in fixed bed reactor at: 420 ℃; 50 bar; space time, 10 gcat h molC-1; H2/COx, 3; CO2/COx, 0.5. Two conventional zeolites were used (with SiO2/Al2O3 ratio of 30 and 280), another one doped with Zn and one nano-sized zeolite with SiO2/Al2O3 ratio of 371. It was determined that acidity conditions the performance of the catalyst, and the best results (yield and selectivity of C5+ of 19.6% and 78.0%, respectively, with a COx conversion of 25.1%) were obtained with nano-sized zeolite (low acidity). In the C5+ fraction, the major components were C5 and C6 paraffins, mostly isoparaffinic; so this fraction (without aromatics and with RON 91) is suitable for incorporating into gasoline pool. The presence of highly acidic sites favors secondary reactions of formation of C1-C4 hydrocarbons, by cracking and hydrogen transfer reactions, decreasing the COx conversion by worsening the synergy between the catalysts. Results are explained by the effect of the acidity on the extent of the stages of reaction network on ZnO–ZrO2/HZSM-5 catalyst, and on synergy between the catalysts.

Suggested Citation

  • Parra, Onintze & Portillo, Ander & Tabernilla, Zuria & Aguayo, Andrés T. & Ereña, Javier & Bilbao, Javier & Ateka, Ainara, 2024. "Upgrading gasoline production through optimizing zeolite properties in the direct hydrogenation of CO2/CO," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124017610
    DOI: 10.1016/j.renene.2024.121693
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Peng & Chang, Xiaoning & Yu, Wenjia & Hu, Qianwen & Ali, Kime Mala & Xing, Chuang & Du, Ce & Yang, Zhixiang & Chen, Shuyao, 2023. "Synergistic effects of ZnO–ZrO2@SAPO-34 core-shell catalyst in catalyzing CO2 hydrogenation for the synthesis of light olefins," Renewable Energy, Elsevier, vol. 209(C), pages 546-557.
    2. Ateka, Ainara & Pérez-Uriarte, Paula & Gamero, Mónica & Ereña, Javier & Aguayo, Andrés T. & Bilbao, Javier, 2017. "A comparative thermodynamic study on the CO2 conversion in the synthesis of methanol and of DME," Energy, Elsevier, vol. 120(C), pages 796-804.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sánchez-Contador, M. & Ateka, A. & Ibáñez, M. & Bilbao, J. & Aguayo, A.T., 2019. "Influence of the operating conditions on the behavior and deactivation of a CuO-ZnO-ZrO2@SAPO-11 core-shell-like catalyst in the direct synthesis of DME," Renewable Energy, Elsevier, vol. 138(C), pages 585-597.
    2. Saebea, Dang & Authayanun, Suthida & Arpornwichanop, Amornchai, 2019. "Process simulation of bio-dimethyl ether synthesis from tri-reforming of biogas: CO2 utilization," Energy, Elsevier, vol. 175(C), pages 36-45.
    3. Chakrabortty, Sankha & Kumar, Ramesh & Nayak, Jayato & Jeon, Byong-Hun & Dargar, Shashi Kant & Tripathy, Suraj K. & Pal, Parimal & Ha, Geon-Soo & Kim, Kwang Ho & Jasiński, Michał, 2023. "Green synthesis of MeOH derivatives through in situ catalytic transformations of captured CO2 in a membrane integrated photo-microreactor system: A state-of-art review for carbon capture and utilizati," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Ding, Haoran & Liu, Shenghui & Liu, Fei & Han, Long & Sun, Shien & Qi, Zhifu, 2024. "Experimental and numerical investigation of chemical-loop steam methane reforming on monolithic BaCoO3/CeO2 oxygen," Energy, Elsevier, vol. 302(C).
    5. Chai, Maojie & Chen, Zhangxing & Nourozieh, Hossein & Yang, Min & Xu, Jinze & Sun, Zhe & Li, Zheng, 2024. "Perspectives of dimethyl ether (DME) as a transitional solvent for enhanced oil recovery (EOR)," Energy, Elsevier, vol. 310(C).
    6. Jia, Guangxin & He, Beibei & Ma, Wenlin & Sun, Yifan, 2019. "Thermodynamic analysis based on simultaneous chemical and phase equilibrium for dehydration of glycerol with methanol," Energy, Elsevier, vol. 188(C).
    7. Zhang, Zhien & Pan, Shu-Yuan & Li, Hao & Cai, Jianchao & Olabi, Abdul Ghani & Anthony, Edward John & Manovic, Vasilije, 2020. "Recent advances in carbon dioxide utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    8. Ateka, Ainara & Portillo, Ander & Sánchez-Contador, Miguel & Bilbao, Javier & Aguayo, Andres T., 2021. "Macro-kinetic model for CuO–ZnO–ZrO2@SAPO-11 core-shell catalyst in the direct synthesis of DME from CO/CO2," Renewable Energy, Elsevier, vol. 169(C), pages 1242-1251.
    9. Gao, Ruxing & Wang, Lei & Zhang, Leiyu & Zhang, Chundong & Jun, Ki-Won & Kim, Seok Ki & Zhao, Tiansheng & Wan, Hui & Guan, Guofeng & Zhu, Yuezhao, 2023. "A multi-criteria sustainability assessment and decision-making framework for DME synthesis via CO2 hydrogenation," Energy, Elsevier, vol. 275(C).
    10. Peters, Ralf, 2017. "Identification and thermodynamic analysis of reaction pathways of methylal and OME-n formation," Energy, Elsevier, vol. 138(C), pages 1221-1246.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124017610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.