IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v169y2021icp1242-1251.html
   My bibliography  Save this article

Macro-kinetic model for CuO–ZnO–ZrO2@SAPO-11 core-shell catalyst in the direct synthesis of DME from CO/CO2

Author

Listed:
  • Ateka, Ainara
  • Portillo, Ander
  • Sánchez-Contador, Miguel
  • Bilbao, Javier
  • Aguayo, Andres T.

Abstract

An original kinetic model has been used to describe the performance of an original CuO–ZnO–ZrO2@SAPO-11 bifunctional catalyst on the one-stage synthesis of dimethyl ether (DME) from CO/CO2 hydrogenation. The model considers that certain individual reactions (the synthesis of methanol and the reverse water gas shift) occur in the metallic function (core) of the catalyst particle, whereas others (methanol dehydration) take place in the shell (acid function), and that the progress of these reactions is conditioned by the diffusion of the components. The kinetic parameters of the individual reactions and the deactivation kinetics have been calculated from experimental data obtained in a wide conditions range (H2/COx ratio, 2.5–4; CO2/COx ratio, 0–1; 10–50 bar; 250–325 °C; 1.25–20 g h molC−1). The use of the model for simulating the packed bed reactor has allowed evaluating the influence of the reaction conditions, as well as assessing the effect of the catalysts particle size. The model predicts DME yields of 64% for syngas (H2+CO) feeds, 38% for CO2/COx ratio of 0.50 and 17% for H2/CO2, respectively, at 70 bar and 290 °C. The maximum conversion of CO2 predicted by the model for the same space time value and temperature surpasses 30% for H2+CO2 feedstocks at 70 bar, greater than the experimental value obtained at 50 bar at the same temperature (∼25%).

Suggested Citation

  • Ateka, Ainara & Portillo, Ander & Sánchez-Contador, Miguel & Bilbao, Javier & Aguayo, Andres T., 2021. "Macro-kinetic model for CuO–ZnO–ZrO2@SAPO-11 core-shell catalyst in the direct synthesis of DME from CO/CO2," Renewable Energy, Elsevier, vol. 169(C), pages 1242-1251.
  • Handle: RePEc:eee:renene:v:169:y:2021:i:c:p:1242-1251
    DOI: 10.1016/j.renene.2021.01.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121000690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.01.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sánchez-Contador, M. & Ateka, A. & Ibáñez, M. & Bilbao, J. & Aguayo, A.T., 2019. "Influence of the operating conditions on the behavior and deactivation of a CuO-ZnO-ZrO2@SAPO-11 core-shell-like catalyst in the direct synthesis of DME," Renewable Energy, Elsevier, vol. 138(C), pages 585-597.
    2. Mevawala, Chirag & Jiang, Yuan & Bhattacharyya, Debangsu, 2019. "Techno-economic optimization of shale gas to dimethyl ether production processes via direct and indirect synthesis routes," Applied Energy, Elsevier, vol. 238(C), pages 119-134.
    3. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Galadima, Ahmad & Muraza, Oki, 2019. "Catalytic thermal conversion of CO2 into fuels: Perspective and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Ateka, Ainara & Pérez-Uriarte, Paula & Gamero, Mónica & Ereña, Javier & Aguayo, Andrés T. & Bilbao, Javier, 2017. "A comparative thermodynamic study on the CO2 conversion in the synthesis of methanol and of DME," Energy, Elsevier, vol. 120(C), pages 796-804.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Peng & Chang, Xiaoning & Yu, Wenjia & Hu, Qianwen & Ali, Kime Mala & Xing, Chuang & Du, Ce & Yang, Zhixiang & Chen, Shuyao, 2023. "Synergistic effects of ZnO–ZrO2@SAPO-34 core-shell catalyst in catalyzing CO2 hydrogenation for the synthesis of light olefins," Renewable Energy, Elsevier, vol. 209(C), pages 546-557.
    2. Gao, Ruxing & Wang, Lei & Zhang, Leiyu & Zhang, Chundong & Jun, Ki-Won & Kim, Seok Ki & Zhao, Tiansheng & Wan, Hui & Guan, Guofeng & Zhu, Yuezhao, 2023. "A multi-criteria sustainability assessment and decision-making framework for DME synthesis via CO2 hydrogenation," Energy, Elsevier, vol. 275(C).
    3. González-Arias, Judith & González-Castaño, Miriam & Sánchez, Marta Elena & Cara-Jiménez, Jorge & Arellano-García, Harvey, 2022. "Valorization of biomass-derived CO2 residues with Cu-MnOx catalysts for RWGS reaction," Renewable Energy, Elsevier, vol. 182(C), pages 443-451.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    2. Chakrabortty, Sankha & Kumar, Ramesh & Nayak, Jayato & Jeon, Byong-Hun & Dargar, Shashi Kant & Tripathy, Suraj K. & Pal, Parimal & Ha, Geon-Soo & Kim, Kwang Ho & Jasiński, Michał, 2023. "Green synthesis of MeOH derivatives through in situ catalytic transformations of captured CO2 in a membrane integrated photo-microreactor system: A state-of-art review for carbon capture and utilizati," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Gao, Ruxing & Wang, Lei & Zhang, Leiyu & Zhang, Chundong & Jun, Ki-Won & Kim, Seok Ki & Zhao, Tiansheng & Wan, Hui & Guan, Guofeng & Zhu, Yuezhao, 2023. "A multi-criteria sustainability assessment and decision-making framework for DME synthesis via CO2 hydrogenation," Energy, Elsevier, vol. 275(C).
    4. Chen, Xiangxiang & Sun, Zhuang & Kuo, Po-Chih & Aziz, Muhammad, 2024. "Carbon-negative olefins production from biomass and solar energy via direct chemical looping," Energy, Elsevier, vol. 289(C).
    5. Chen, Jianjun & Lam, Hon Loong & Qian, Yu & Yang, Siyu, 2021. "Combined energy consumption and CO2 capture management: Improved acid gas removal process integrated with CO2 liquefaction," Energy, Elsevier, vol. 215(PA).
    6. Uddin, Md Mosleh & Simson, Amanda & Wright, Mark Mba, 2020. "Techno-economic and greenhouse gas emission analysis of dimethyl ether production via the bi-reforming pathway for transportation fuel," Energy, Elsevier, vol. 211(C).
    7. Sánchez-Contador, M. & Ateka, A. & Ibáñez, M. & Bilbao, J. & Aguayo, A.T., 2019. "Influence of the operating conditions on the behavior and deactivation of a CuO-ZnO-ZrO2@SAPO-11 core-shell-like catalyst in the direct synthesis of DME," Renewable Energy, Elsevier, vol. 138(C), pages 585-597.
    8. Saebea, Dang & Authayanun, Suthida & Arpornwichanop, Amornchai, 2019. "Process simulation of bio-dimethyl ether synthesis from tri-reforming of biogas: CO2 utilization," Energy, Elsevier, vol. 175(C), pages 36-45.
    9. Lopes, J.V.M. & Bresciani, A.E. & Carvalho, K.M. & Kulay, L.A. & Alves, R.M.B., 2021. "Multi-criteria decision approach to select carbon dioxide and hydrogen sources as potential raw materials for the production of chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Jia, Guangxin & He, Beibei & Ma, Wenlin & Sun, Yifan, 2019. "Thermodynamic analysis based on simultaneous chemical and phase equilibrium for dehydration of glycerol with methanol," Energy, Elsevier, vol. 188(C).
    11. Mevawala, Chirag & Bai, Xinwei & Hu, Jianli & Bhattacharyya, Debangsu, 2023. "Plant-wide modeling and techno-economic analysis of a direct non-oxidative methane dehydroaromatization process via conventional and microwave-assisted catalysis," Applied Energy, Elsevier, vol. 336(C).
    12. Chen, Yifeng & Song, Shuailong & Li, Ning & Wu, Jian & Lu, Xiaohua & Ji, Xiaoyan, 2022. "Developing hybrid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/water absorbent for CO2 separation," Applied Energy, Elsevier, vol. 326(C).
    13. Zhang, Zhien & Pan, Shu-Yuan & Li, Hao & Cai, Jianchao & Olabi, Abdul Ghani & Anthony, Edward John & Manovic, Vasilije, 2020. "Recent advances in carbon dioxide utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    14. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    15. Nugroho, Yohanes Kristianto & Zhu, Liandong & Heavey, Cathal, 2022. "Building an agent-based techno-economic assessment coupled with life cycle assessment of biomass to methanol supply chains," Applied Energy, Elsevier, vol. 309(C).
    16. Sun, Zhuang & Aziz, Muhammad, 2022. "Solar-assisted biomass chemical looping gasification in an indirect coupling: Principle and application," Applied Energy, Elsevier, vol. 323(C).
    17. Jiban Podder & Biswa R. Patra & Falguni Pattnaik & Sonil Nanda & Ajay K. Dalai, 2023. "A Review of Carbon Capture and Valorization Technologies," Energies, MDPI, vol. 16(6), pages 1-29, March.
    18. Arinelli, Lara de Oliveira & Brigagão, George Victor & Wiesberg, Igor Lapenda & Teixeira, Alexandre Mendonça & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F., 2022. "Carbon-dioxide-to-methanol intensification with supersonic separators: Extra-carbonated natural gas purification via carbon capture and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Narayanamoorthy, Samayan & Ramya, L. & Kalaiselvan, Samayan & Kureethara, Joseph Varghese & Kang, Daekook, 2021. "Use of DEMATEL and COPRAS method to select best alternative fuel for control of impact of greenhouse gas emissions," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    20. Peters, Ralf, 2017. "Identification and thermodynamic analysis of reaction pathways of methylal and OME-n formation," Energy, Elsevier, vol. 138(C), pages 1221-1246.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:1242-1251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.