IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs0960148124017439.html
   My bibliography  Save this article

Investigation on rooftop PV performance and impact on microclimate in tropical cities ---- A WRF modelling study in Singapore

Author

Listed:
  • Zhou, Wenqian
  • Li, Xiangli
  • Duanmu, Lin
  • Yuan, Chao

Abstract

Building photovoltaic (PV) technologies have been widespread developed. However, the quantitative impact of PV panels on both urban climate and energy balance needs to be investigated. This study adopts the Weather Research and Forecasting model to discuss coupling effects of rooftop PV panels on thermal climate and electricity balance for cooling, and provides installation strategies accordingly. Numerical simulations with five rooftop PV coverage fractions of solar panels for a clear-sky are conducted at a high spatial resolution. Results indicate that rooftop PV panels cool Singapore by a maximum of 1.0 °C during the daytime, and no impact on nocturnal air temperature is observed. PV coverage fractions of 75%–100 % and 75 % are recommended for the North-East area and other four areas to decrease air temperature at least 0.8 °C and 0.4 °C respectively. The electricity offset percentages (EOP) are linearly related to rooftop PV coverage fractions. To maximize the cooling energy offset, 75 % PV coverage is sufficient for most regions of Singapore, while 100 % is recommended for the West and East. By leveraging the dual effects on city cooling and energy balancing, East/West/North-East regions follow the principle of a rooftop PV coverage fraction of 100 %, while 75 % is suggested in the Central/North areas.

Suggested Citation

  • Zhou, Wenqian & Li, Xiangli & Duanmu, Lin & Yuan, Chao, 2024. "Investigation on rooftop PV performance and impact on microclimate in tropical cities ---- A WRF modelling study in Singapore," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017439
    DOI: 10.1016/j.renene.2024.121675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kapsalis, Vasileios & Maduta, Carmen & Skandalos, Nikolaos & Wang, Meng & Bhuvad, Sushant Suresh & D'Agostino, Delia & Ma, Tao & Raj, Uday & Parker, Danny & Peng, Jinqing & Karamanis, Dimitris, 2024. "Critical assessment of large-scale rooftop photovoltaics deployment in the global urban environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Siddharth Joshi & Shivika Mittal & Paul Holloway & Priyadarshi Ramprasad Shukla & Brian Ó Gallachóir & James Glynn, 2021. "High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Tianyi Chen & Yaning An & Chye Kiang Heng, 2022. "A Review of Building-Integrated Photovoltaics in Singapore: Status, Barriers, and Prospects," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    4. Nobre, André M. & Severiano, Carlos A. & Karthik, Shravan & Kubis, Marek & Zhao, Lu & Martins, Fernando R. & Pereira, Enio B. & Rüther, Ricardo & Reindl, Thomas, 2016. "PV power conversion and short-term forecasting in a tropical, densely-built environment in Singapore," Renewable Energy, Elsevier, vol. 94(C), pages 496-509.
    5. Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.
    6. Chang, Rui & Luo, Yong & Zhu, Rong, 2020. "Simulated local climatic impacts of large-scale photovoltaics over the barren area of Qinghai, China," Renewable Energy, Elsevier, vol. 145(C), pages 478-489.
    7. Arnette, Andrew N., 2013. "Integrating rooftop solar into a multi-source energy planning optimization model," Applied Energy, Elsevier, vol. 111(C), pages 456-467.
    8. Quek, Augustine & Ee, Alvin & Ng, Adam & Wah, Tong Yen, 2018. "Challenges in Environmental Sustainability of renewable energy options in Singapore," Energy Policy, Elsevier, vol. 122(C), pages 388-394.
    9. Bhuvad, Sushant Suresh & Udayraj,, 2022. "Investigation of annual performance of a building shaded by rooftop PV panels in different climate zones of India," Renewable Energy, Elsevier, vol. 189(C), pages 1337-1357.
    10. Chua, K.J. & Chou, S.K., 2010. "Energy performance of residential buildings in Singapore," Energy, Elsevier, vol. 35(2), pages 667-678.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouaziz, Mohamed Chahine & El Koundi, Mourad & Ennine, Ghaleb, 2024. "High-resolution solar panel detection in Sfax, Tunisia: A UNet-Based approach," Renewable Energy, Elsevier, vol. 235(C).
    2. Janusz Marchwiński & Agnieszka Starzyk & Ołeksij Kopyłow & Karolina Kurtz-Orecka, 2023. "Impact of Atrium Glazing with and without BIPV on Energy Performance of the Low-Rise Building: A Central European Case Study," Energies, MDPI, vol. 16(12), pages 1-25, June.
    3. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    4. Shaker, Hamid & Manfre, Daniel & Zareipour, Hamidreza, 2020. "Forecasting the aggregated output of a large fleet of small behind-the-meter solar photovoltaic sites," Renewable Energy, Elsevier, vol. 147(P1), pages 1861-1869.
    5. Liang, Liang & Wu, Xuanyu & Yang, Min, 2025. "Shadows behind the sun: Inequity caused by rooftop solar and responses to it," Applied Energy, Elsevier, vol. 377(PB).
    6. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    7. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    8. Hossein Heirani & Naser Bagheri Moghaddam & Sina Labbafi & Seyedali Sina, 2022. "A Business Model for Developing Distributed Photovoltaic Systems in Iran," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    9. Marcus Eichhorn & Mattes Scheftelowitz & Matthias Reichmuth & Christian Lorenz & Kyriakos Louca & Alexander Schiffler & Rita Keuneke & Martin Bauschmann & Jens Ponitka & David Manske & Daniela Thrän, 2019. "Spatial Distribution of Wind Turbines, Photovoltaic Field Systems, Bioenergy, and River Hydro Power Plants in Germany," Data, MDPI, vol. 4(1), pages 1-15, February.
    10. Peters, Pedro & da Costa, Vinicius Braga Ferreira & Dias, Bruno Henriques & Bonatto, Benedito Donizeti, 2025. "A holistic analysis of environmental impacts and improvement pathways for the Brazilian electric sector based on long-term planning and life cycle assessment," Applied Energy, Elsevier, vol. 377(PB).
    11. Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
    12. Diakaki, Christina & Grigoroudis, Evangelos & Kolokotsa, Dionyssia, 2013. "Performance study of a multi-objective mathematical programming modelling approach for energy decision-making in buildings," Energy, Elsevier, vol. 59(C), pages 534-542.
    13. Tsang, S.W. & Jim, C.Y., 2011. "Theoretical evaluation of thermal and energy performance of tropical green roofs," Energy, Elsevier, vol. 36(5), pages 3590-3598.
    14. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    15. Hannes Koch & Stefan Lechner & Sebastian Erdmann & Martin Hofmann, 2022. "Assessing the Potential of Rooftop Photovoltaics by Processing High-Resolution Irradiation Data, as Applied to Giessen, Germany," Energies, MDPI, vol. 15(19), pages 1-17, September.
    16. Reikard, Gordon & Hansen, Clifford, 2019. "Forecasting solar irradiance at short horizons: Frequency and time domain models," Renewable Energy, Elsevier, vol. 135(C), pages 1270-1290.
    17. Lanlan Li & Xinpei Song & Jingjing Li & Ke Li & Jianling Jiao, 2023. "The impacts of temperature on residential electricity consumption in Anhui, China: does the electricity price matter?," Climatic Change, Springer, vol. 176(3), pages 1-26, March.
    18. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Liu, Junling & Li, Mengyue & Xue, Liya & Kobashi, Takuro, 2022. "A framework to evaluate the energy-environment-economic impacts of developing rooftop photovoltaics integrated with electric vehicles at city level," Renewable Energy, Elsevier, vol. 200(C), pages 647-657.
    20. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.