IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs0960148124017154.html
   My bibliography  Save this article

Exact optimization of inter-array dynamic cable networks for Floating Offshore Wind Farms

Author

Listed:
  • Pérez-Rúa, Juan-Andrés
  • Lund, Rasmus Sode
  • Verelst, David Robert
  • Abrahamsen, Asger Bech
  • Dykes, Katherine

Abstract

Optimization of inter-array dynamic cables for Floating Offshore Wind Farms (FOWFs) using three integer linear programs and a heuristic is presented. Design optimization of fixed-bottom offshore wind is a challenging research problem but the presence of dynamic components in FOWFs adds new complexity — as the Floating Offshore Wind Turbine (FOWT), the support structure including the station-keeping system, and the floating power cables all experience dynamic movement in reaction to wind, wave and even current forcing. In this study, dynamic modeling for the response of this system is first carried out to assess the risk of potential mechanical interference between movable elements. Subsequently, safety zones constraints are defined in the optimization to ensure minimally safe conditions for operation of the combined FOWT/support-structure/cables system. Likewise, additional constraints including maximum thermal limits, tree topology without branching, and others are incorporated. The programs follow an incremental approach. Model 1 proposes a simple way to avoid mechanical interference, Model 2 adds variables modeling mooring lines anchoring, and Model 3 increases the degrees of freedom through addition of the positioning of the touchdown point where the dynamic and static sections meet at the seabed. The applicability is illustrated through realistic case studies for a reference FOWF in Europe. Results show that: (i) Modern branch-and-cut solvers are able to solve Model 2 getting the global optimum in seconds, and (ii) further cost refining can be obtained after wrapping Model 3 in the heuristic, using Model 2 as the initial design, decreasing the cost of this layout by around 1.5% in few hours through a nonrectilinear topology.

Suggested Citation

  • Pérez-Rúa, Juan-Andrés & Lund, Rasmus Sode & Verelst, David Robert & Abrahamsen, Asger Bech & Dykes, Katherine, 2024. "Exact optimization of inter-array dynamic cable networks for Floating Offshore Wind Farms," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017154
    DOI: 10.1016/j.renene.2024.121647
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Dongran & Yan, Jiaqi & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Yang, Jian & Dong, Mi & Chen, Yang, 2023. "Optimization of floating wind farm power collection system using a novel two-layer hybrid method," Applied Energy, Elsevier, vol. 348(C).
    2. Rentschler, Manuel U.T. & Adam, Frank & Chainho, Paulo, 2019. "Design optimization of dynamic inter-array cable systems for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 622-635.
    3. Magnus Daniel Kallinger & José Ignacio Rapha & Pau Trubat Casal & José Luis Domínguez-García, 2023. "Offshore Electrical Grid Layout Optimization for Floating Wind—A Review," Clean Technol., MDPI, vol. 5(3), pages 1-37, June.
    4. Fischetti, Martina & Pisinger, David, 2018. "Optimizing wind farm cable routing considering power losses," European Journal of Operational Research, Elsevier, vol. 270(3), pages 917-930.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siyu Tao & Andrés Feijóo & Jiemin Zhou & Gang Zheng, 2020. "Topology Design of an Offshore Wind Farm with Multiple Types of Wind Turbines in a Circular Layout," Energies, MDPI, vol. 13(3), pages 1-16, January.
    2. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    3. Ade Irawan, Chandra & Starita, Stefano & Chan, Hing Kai & Eskandarpour, Majid & Reihaneh, Mohammad, 2023. "Routing in offshore wind farms: A multi-period location and maintenance problem with joint use of a service operation vessel and a safe transfer boat," European Journal of Operational Research, Elsevier, vol. 307(1), pages 328-350.
    4. Yuchen Wang & Dongran Song & Li Wang & Chaoneng Huang & Qian Huang & Jian Yang & Solomin Evgeny, 2025. "Review of Design Schemes and AI Optimization Algorithms for High-Efficiency Offshore Wind Farm Collection Systems," Energies, MDPI, vol. 18(3), pages 1-27, January.
    5. Pedersen, Jaap & Weinand, Jann Michael & Syranidou, Chloi & Rehfeldt, Daniel, 2024. "An efficient solver for large-scale onshore wind farm siting including cable routing," European Journal of Operational Research, Elsevier, vol. 317(2), pages 616-630.
    6. José Baptista & Beatriz Jesus & Adelaide Cerveira & Eduardo J. Solteiro Pires, 2023. "Offshore Wind Farm Layout Optimisation Considering Wake Effect and Power Losses," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    7. Hugo Díaz & C. Guedes Soares, 2022. "Multicriteria Decision Approach to the Design of Floating Wind Farm Export Cables," Energies, MDPI, vol. 15(18), pages 1-18, September.
    8. Ruijuan Sun & Gayan Abeynayake & Jun Liang & Kewen Wang, 2021. "Reliability and Economic Evaluation of Offshore Wind Power DC Collection Systems," Energies, MDPI, vol. 14(10), pages 1-24, May.
    9. Wu, Yan & Xia, Tianqi & Wang, Yufei & Zhang, Haoran & Feng, Xiao & Song, Xuan & Shibasaki, Ryosuke, 2022. "A synchronization methodology for 3D offshore wind farm layout optimization with multi-type wind turbines and obstacle-avoiding cable network," Renewable Energy, Elsevier, vol. 185(C), pages 302-320.
    10. Mohsen Sobhaniasl & Francesco Petrini & Madjid Karimirad & Franco Bontempi, 2020. "Fatigue Life Assessment for Power Cables in Floating Offshore Wind Turbines," Energies, MDPI, vol. 13(12), pages 1-19, June.
    11. Dong, Wei & Chen, Chaofan & Fang, Xiaolun & Zhang, Fan & Yang, Qiang, 2024. "Enhanced integrated energy system planning through unified model coupling multiple energy and carbon emission flows," Energy, Elsevier, vol. 307(C).
    12. Dapeng Zhang & Bowen Zhao & Keqiang Zhu, 2022. "Hydrodynamic Response of Ocean-Towed Cable-Array System under Different Munk Moment Coefficients," Sustainability, MDPI, vol. 14(3), pages 1-18, February.
    13. López-Ramos, Francisco & Nasini, Stefano & Sayed, Mohamed H., 2020. "An integrated planning model in centralized power systems," European Journal of Operational Research, Elsevier, vol. 287(1), pages 361-377.
    14. Bórawski, Piotr & Bełdycka-Bórawska, Aneta & Jankowski, Krzysztof Jóżef & Dubis, Bogdan & Dunn, James W., 2020. "Development of wind energy market in the European Union," Renewable Energy, Elsevier, vol. 161(C), pages 691-700.
    15. Jin, Rongsen & Hou, Peng & Yang, Guangya & Qi, Yuanhang & Chen, Cong & Chen, Zhe, 2019. "Cable routing optimization for offshore wind power plants via wind scenarios considering power loss cost model," Applied Energy, Elsevier, vol. 254(C).
    16. Samuel Bimenyimana & Chen Wang & Godwin Norense Osarumwense Asemota & Jean Marie Vianney Uwizerwa & Jeanne Paula Ihirwe & Mucyo Ndera Tuyizere & Fidele Mwizerwa & Yiyi Mo & Martine Abiyese & Homère Is, 2024. "Wind Energy Siting Optimization in Fujian Province, China," Sustainability, MDPI, vol. 16(24), pages 1-39, December.
    17. Amorosi, Lavinia & Fischetti, Martina & Paradiso, Rosario & Roberti, Roberto, 2024. "Optimization models for the installation planning of offshore wind farms," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1182-1196.
    18. Patrycjusz Zarębski & Dominik Katarzyński & Hanna Godlewska-Majkowska & Agnieszka Komor & Adam Gawryluk, 2024. "Wind Farms’ Location and Geographical Proximity as a Key Factor in Sustainable City Development: Evidence from Poland," Energies, MDPI, vol. 17(14), pages 1-15, July.
    19. Stålhane, Magnus & Halvorsen-Weare, Elin E. & Nonås, Lars Magne & Pantuso, Giovanni, 2019. "Optimizing vessel fleet size and mix to support maintenance operations at offshore wind farms," European Journal of Operational Research, Elsevier, vol. 276(2), pages 495-509.
    20. Irawan, Chandra Ade & Eskandarpour, Majid & Ouelhadj, Djamila & Jones, Dylan, 2021. "Simulation-based optimisation for stochastic maintenance routing in an offshore wind farm," European Journal of Operational Research, Elsevier, vol. 289(3), pages 912-926.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.