IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs0960148124017014.html
   My bibliography  Save this article

Simulation of a solar thermal system with a parabolic concentrator incorporating an evacuated tube system equipped with a new designed turbulator and hybrid nanofluid

Author

Listed:
  • Esmaeili, Z.
  • Sheikholeslami, M.
  • Salehi, F.
  • Mohammed, Hussein A.

Abstract

This study explores a solar concentrated unit with a parabolic concentrator. The evacuated region between the glass and absorber is incorporated, and for modeling purposes, the discrete ordinates (DO) method is utilized. The working fluid contains a mixture of Syltherm 800 and hybrid nanoparticles (CNT + SiO2). The heat flux absorbed by tube is derived from experimental work and applied as a heat source within the solid layer of the absorber. A new shape of turbulator is used to enhance the swirl flow, and turbulent flow is simulated. The influences of dispersing hybrid nanoparticles, inlet velocity (Vin), inlet temperature (Tin), and gravity force on the Darcy factor (f), convective heat transfer coefficient (h), and thermal efficiency (η) have been investigated. When hybrid nanoparticles utilize, the efficiency (η) increases by approximately 3.25% in the presence of a turbulator. Furthermore, the addition of nanoparticles significantly enhances the efficiency gains from the turbulator, with an improvement of about 46.65%. In the absence of a turbulator, as Vin increases, the values of η and “h” also increase by approximately 8.91% and 12.25%, respectively. When Vin is 0.06 m/s, the installation of a turbulator can increase η by about 8.54%. With the increase in Tin for the absorber pipe equipped with a turbulator, efficiency decreases by approximately 10.86%. For a conventional pipe, including the effect of gravity significantly enhances the performance, resulting in increase of approximately 67.54% in “h”, 98.14% in “f”, and 3.73% in (η). Additionally, the effectiveness of adding a turbulator on improving the efficiency diminishes when gravity is taken into account.

Suggested Citation

  • Esmaeili, Z. & Sheikholeslami, M. & Salehi, F. & Mohammed, Hussein A., 2024. "Simulation of a solar thermal system with a parabolic concentrator incorporating an evacuated tube system equipped with a new designed turbulator and hybrid nanofluid," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017014
    DOI: 10.1016/j.renene.2024.121633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.