IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124016185.html
   My bibliography  Save this article

Targeting the high frequency tail of wave spectra for energy harvesting in marine sensor networks

Author

Listed:
  • Davidson, Josh
  • Nava, Vincenzo

Abstract

While the conventional philosophy of wave energy conversion is to target the large amounts of power in the peak of the input wave spectrum, this study proposes that for the application of powering marine sensor networks (MSNs), it is advantageous to target the high frequency tail of the wave spectrum. This strategy is predicated on two primary advantages: the spatial and temporal persistence of the wave energy resource in the high-frequency region and its compatibility with the resonance characteristics of smaller MSN devices. To identify the optimal frequency range for energy harvesting, we conducted a detailed analysis of wave spectra across multiple coastal locations. This involved calculating and comparing the power spectra at different frequencies, using data from long-term wave measurements. The high-frequency tail was defined by determining the frequency above which the energy content showed consistent temporal and spatial stability across all study sites. The quantification of available power was achieved by integrating the wave power spectrum over the identified frequency range. Our case study, focusing on the coast of Queensland, Australia, reveals that frequencies above 2.5 rad/s consistently offer a stable and persistent energy resource. The available power in this range is quantified, totalling an average of 60 W/m, with additional analysis provided within narrower sub-bandwidths to address the inherent narrow-bandedness of wave energy harvesters. This research provides critical insights for the design of efficient wave energy harvesters tailored to the needs of diverse marine environments.

Suggested Citation

  • Davidson, Josh & Nava, Vincenzo, 2024. "Targeting the high frequency tail of wave spectra for energy harvesting in marine sensor networks," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016185
    DOI: 10.1016/j.renene.2024.121550
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.