IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124016008.html
   My bibliography  Save this article

Numerical simulation of fluidized bed reactor for calcium looping energy release process in thermochemical storage: Influence of key conditions

Author

Listed:
  • Guo, Xiaodie
  • Zhou, Wenjing
  • Wei, Jinjia

Abstract

The thermochemical energy storage technology applied to concentrating solar power is expected to realize the large-scale deployment of solar power. Reactor design is recognized as a key challenge. In this study, the calcium looping energy release process in a bubbling fluidized bed reactor was numerically simulated using an Eulerian-Eulerian Two-fluid Model. The effects of immersed tubes, particle size, CO2 concentration, and flow velocity on the multi-physical coupling characteristics during the carbonation process were explored. The result indicated that the presence of immersed tubes improves flow characteristics and effectively controls the bed temperature. Particle size had no significant effect on the carbonation process during the kinetically controlled stage. Increasing CO2 concentration significantly enhanced the conversion rate; however, it could lead to a reduction in particle renewal frequency, thereby deteriorating the heat transfer coefficient (HTC). The study on flow velocity indicated that a balance should be struck between bed stability and reaction conversion rate, with the model identifying 0.48 m/s to 0.74 m/s as the suitable operating gas velocity. Additionally, the study compared two methods for calculating HTC and analyzed the energy utilization efficiency during the carbonation process, providing recommendations for industrial applications.

Suggested Citation

  • Guo, Xiaodie & Zhou, Wenjing & Wei, Jinjia, 2024. "Numerical simulation of fluidized bed reactor for calcium looping energy release process in thermochemical storage: Influence of key conditions," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016008
    DOI: 10.1016/j.renene.2024.121532
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.