Modeling and performance estimation for L-shaped OWC wave energy converters with a theoretical correction for spring-like air compressibility
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2024.121499
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chow, Yi-Chih & Chang, Yu-Chi & Chen, Da-Wei & Lin, Chen-Chou & Tzang, Shiaw-Yih, 2018. "Parametric design methodology for maximizing energy capture of a bottom-hinged flap-type WEC with medium wave resources," Renewable Energy, Elsevier, vol. 126(C), pages 605-616.
- López, I. & Pereiras, B. & Castro, F. & Iglesias, G., 2014. "Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model," Applied Energy, Elsevier, vol. 127(C), pages 105-114.
- Iván López & Rodrigo Carballo & David Mateo Fouz & Gregorio Iglesias, 2021. "Design Selection and Geometry in OWC Wave Energy Converters for Performance," Energies, MDPI, vol. 14(6), pages 1-18, March.
- López, I. & Carballo, R. & Taveira-Pinto, F. & Iglesias, G., 2020. "Sensitivity of OWC performance to air compressibility," Renewable Energy, Elsevier, vol. 145(C), pages 1334-1347.
- Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter," Applied Energy, Elsevier, vol. 189(C), pages 1-20.
- Dezhi Ning & Rongquan Wang & Chongwei Zhang, 2017. "Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter," Sustainability, MDPI, vol. 9(9), pages 1-12, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ching-Piao Tsai & Chun-Han Ko & Ying-Chi Chen, 2018. "Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
- Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
- Zhao, Ming & Ning, Dezhi, 2024. "A review of numerical methods for studying hydrodynamic performance of oscillating water column (OWC) devices," Renewable Energy, Elsevier, vol. 233(C).
- Rezanejad, K. & Gadelho, J.F.M. & Guedes Soares, C., 2019. "Hydrodynamic analysis of an oscillating water column wave energy converter in the stepped bottom condition using CFD," Renewable Energy, Elsevier, vol. 135(C), pages 1241-1259.
- Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
- Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2018. "Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling," Renewable Energy, Elsevier, vol. 119(C), pages 741-753.
- Zhu, Guixun & Samuel, John & Zheng, Siming & Hughes, Jason & Simmonds, David & Greaves, Deborah, 2023. "Numerical investigation on the hydrodynamic performance of a 2D U-shaped Oscillating Water Column wave energy converter," Energy, Elsevier, vol. 274(C).
- Dai, Saishuai & Day, Sandy & Yuan, Zhiming & Wang, Haibin, 2019. "Investigation on the hydrodynamic scaling effect of an OWC type wave energy device using experiment and CFD simulation," Renewable Energy, Elsevier, vol. 142(C), pages 184-194.
- Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2017. "Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study," Energy, Elsevier, vol. 139(C), pages 1197-1209.
- Gonçalves, Rafael A.A.C. & Teixeira, Paulo R.F. & Didier, Eric & Torres, Fernando R., 2020. "Numerical analysis of the influence of air compressibility effects on an oscillating water column wave energy converter chamber," Renewable Energy, Elsevier, vol. 153(C), pages 1183-1193.
- Zhan, Jie-Min & Fan, Qing & Hu, Wen-Qing & Gong, Ye-Jun, 2020. "Hybrid realizable k−ε/laminar method in the application of 3D heaving OWCs," Renewable Energy, Elsevier, vol. 155(C), pages 691-702.
- Portillo, J.C.C. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O., 2023. "Implications of spring-like air compressibility effects in floating coaxial-duct OWCs: Experimental and numerical investigation," Renewable Energy, Elsevier, vol. 212(C), pages 478-491.
- Iván López & Rodrigo Carballo & David Mateo Fouz & Gregorio Iglesias, 2021. "Design Selection and Geometry in OWC Wave Energy Converters for Performance," Energies, MDPI, vol. 14(6), pages 1-18, March.
- Zheng, Siming & Michele, Simone & Liang, Hui & Iglesias, Gregorio & Greaves, Deborah, 2024. "Wave power extraction from a wave farm of tubular structure integrated oscillating water columns," Renewable Energy, Elsevier, vol. 225(C).
- Didier, Eric & Teixeira, Paulo R.F., 2024. "Numerical analysis of 3D hydrodynamics and performance of an array of oscillating water column wave energy converters integrated into a vertical breakwater," Renewable Energy, Elsevier, vol. 225(C).
- Falcão, António F.O. & Henriques, João C.C. & Gomes, Rui P.F. & Portillo, Juan C.C., 2022. "Theoretically based correction to model test results of OWC wave energy converters to account for air compressibility effect," Renewable Energy, Elsevier, vol. 198(C), pages 41-50.
- Peymani, Milad & Nikseresht, Amir H. & Bingham, Harry B., 2024. "A 3D numerical investigation of the influence of the geometrical parameters of an I-beam attenuator OWC on its performance at the resonance period," Energy, Elsevier, vol. 286(C).
- Elhanafi, Ahmed & Kim, Chan Joo, 2018. "Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter," Renewable Energy, Elsevier, vol. 125(C), pages 518-528.
- Mottahedi, H.R. & Anbarsooz, M. & Passandideh-Fard, M., 2018. "Application of a fictitious domain method in numerical simulation of an oscillating wave surge converter," Renewable Energy, Elsevier, vol. 121(C), pages 133-145.
More about this item
Keywords
Oscillating water column (OWC); L-shaped OWC; Spring-like air compressibility effect; Scaling-rematched approach; Theoretical correction; Performance estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124015672. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.