IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v121y2018icp133-145.html
   My bibliography  Save this article

Application of a fictitious domain method in numerical simulation of an oscillating wave surge converter

Author

Listed:
  • Mottahedi, H.R.
  • Anbarsooz, M.
  • Passandideh-Fard, M.

Abstract

In recent years, several numerical methods, including potential flow theory and Computational Fluid Dynamics (CFD) methods, have been employed to predict the hydrodynamic performance of Oscillating Wave Surge Converters (OWSCs). In the CFD methods, in order to consider the motions of the OWSC inside the fluid, a dynamic mesh is commonly used which is computationally expensive and troublesome. In this paper, a fast fictitious domain (FFD) method in conjunction with the Volume-Of-Fluid (VOF) method is proposed, within the frame of a fixed Eulerian grid. The method is used to simulate the fully-nonlinear steep wave interactions with an OWSC at various incident conditions, including the slamming. The accuracy of the proposed model is examined by comparing the numerical results with the available experimental data in the literature for a two-dimensional slamming event. The model is also used to investigate the effects of the Power-Take-Off (PTO) damping coefficient on the OWSC capture factor, slamming characteristics and hinge forces. Results show that a freely moving OWSC, might experience considerably higher hinge forces in comparison with an OWSC having a suitably adjusted PTO damping force. Furthermore, as the wave height increases, the maximum capture factors occur at higher values of the PTO damping coefficient.

Suggested Citation

  • Mottahedi, H.R. & Anbarsooz, M. & Passandideh-Fard, M., 2018. "Application of a fictitious domain method in numerical simulation of an oscillating wave surge converter," Renewable Energy, Elsevier, vol. 121(C), pages 133-145.
  • Handle: RePEc:eee:renene:v:121:y:2018:i:c:p:133-145
    DOI: 10.1016/j.renene.2018.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118300211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López, I. & Pereiras, B. & Castro, F. & Iglesias, G., 2014. "Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model," Applied Energy, Elsevier, vol. 127(C), pages 105-114.
    2. Renzi, E. & Abdolali, A. & Bellotti, G. & Dias, F., 2014. "Wave-power absorption from a finite array of oscillating wave surge converters," Renewable Energy, Elsevier, vol. 63(C), pages 55-68.
    3. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter," Applied Energy, Elsevier, vol. 189(C), pages 1-20.
    4. Anbarsooz, M. & Passandideh-Fard, M. & Moghiman, M., 2014. "Numerical simulation of a submerged cylindrical wave energy converter," Renewable Energy, Elsevier, vol. 64(C), pages 132-143.
    5. Esteban, Miguel & Leary, David, 2012. "Current developments and future prospects of offshore wind and ocean energy," Applied Energy, Elsevier, vol. 90(1), pages 128-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yao & Mizutani, Norimi & Cho, Yong-Hwan & Nakamura, Tomoaki, 2022. "Performance enhancement of a bottom-hinged oscillating wave surge converter via resonant adjustment," Renewable Energy, Elsevier, vol. 201(P1), pages 624-635.
    2. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Cocard, Margot, 2021. "Wave energy extraction for an array of dual-oscillating wave surge converter with different layouts," Applied Energy, Elsevier, vol. 292(C).
    3. Wang, Yize & Liu, Zhenqing, 2024. "A bionic design of oscillating wave surge energy converter based on scallops," Energy, Elsevier, vol. 304(C).
    4. Wang, Yize & Liu, Zhenqing, 2021. "Proposal of novel analytical wake model and GPU-accelerated array optimization method for oscillating wave surge energy converter," Renewable Energy, Elsevier, vol. 179(C), pages 563-583.
    5. Cheng, Yong & Ji, Chunyan & Zhai, Gangjun, 2019. "Fully nonlinear analysis incorporating viscous effects for hydrodynamics of an oscillating wave surge converter with nonlinear power take-off system," Energy, Elsevier, vol. 179(C), pages 1067-1081.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    2. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
    3. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2018. "Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling," Renewable Energy, Elsevier, vol. 119(C), pages 741-753.
    4. Dai, Saishuai & Day, Sandy & Yuan, Zhiming & Wang, Haibin, 2019. "Investigation on the hydrodynamic scaling effect of an OWC type wave energy device using experiment and CFD simulation," Renewable Energy, Elsevier, vol. 142(C), pages 184-194.
    5. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2017. "Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study," Energy, Elsevier, vol. 139(C), pages 1197-1209.
    6. Ching-Piao Tsai & Chun-Han Ko & Ying-Chi Chen, 2018. "Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    7. Gonçalves, Rafael A.A.C. & Teixeira, Paulo R.F. & Didier, Eric & Torres, Fernando R., 2020. "Numerical analysis of the influence of air compressibility effects on an oscillating water column wave energy converter chamber," Renewable Energy, Elsevier, vol. 153(C), pages 1183-1193.
    8. Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
    9. Shi, Hongda & Cao, Feifei & Liu, Zhen & Qu, Na, 2016. "Theoretical study on the power take-off estimation of heaving buoy wave energy converter," Renewable Energy, Elsevier, vol. 86(C), pages 441-448.
    10. Shahabi-Nejad, Meysam & Nikseresht, Amir H., 2022. "A comprehensive investigation of a hybrid wave energy converter including oscillating water column and horizontal floating cylinder," Energy, Elsevier, vol. 243(C).
    11. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Cocard, Margot, 2021. "Wave energy extraction for an array of dual-oscillating wave surge converter with different layouts," Applied Energy, Elsevier, vol. 292(C).
    12. Zhao, Ming & Ning, Dezhi, 2024. "A review of numerical methods for studying hydrodynamic performance of oscillating water column (OWC) devices," Renewable Energy, Elsevier, vol. 233(C).
    13. Peymani, Milad & Nikseresht, Amir H. & Bingham, Harry B., 2024. "A 3D numerical investigation of the influence of the geometrical parameters of an I-beam attenuator OWC on its performance at the resonance period," Energy, Elsevier, vol. 286(C).
    14. Rezanejad, K. & Gadelho, J.F.M. & Guedes Soares, C., 2019. "Hydrodynamic analysis of an oscillating water column wave energy converter in the stepped bottom condition using CFD," Renewable Energy, Elsevier, vol. 135(C), pages 1241-1259.
    15. Elhanafi, Ahmed & Kim, Chan Joo, 2018. "Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter," Renewable Energy, Elsevier, vol. 125(C), pages 518-528.
    16. Gang, Ao & Guo, Baoming & Hu, Zhongbo & Hu, Rui, 2022. "Performance analysis of a coast – OWC wave energy converter integrated system," Applied Energy, Elsevier, vol. 311(C).
    17. Rashidi, Sheida & Nikseresht, Amir H., 2024. "Numerical investigation of the response of the hybrid wave energy converter including oscillating water column and horizontal floating cylinder to irregular waves," Energy, Elsevier, vol. 301(C).
    18. Zheng, Siming & Zhang, Yongliang & Iglesias, Gregorio, 2020. "Power capture performance of hybrid wave farms combining different wave energy conversion technologies: The H-factor," Energy, Elsevier, vol. 204(C).
    19. Carlos Perez-Collazo & Deborah Greaves & Gregorio Iglesias, 2018. "A Novel Hybrid Wind-Wave Energy Converter for Jacket-Frame Substructures," Energies, MDPI, vol. 11(3), pages 1-20, March.
    20. Ning, De-zhi & Zhou, Yu & Mayon, Robert & Johanning, Lars, 2020. "Experimental investigation on the hydrodynamic performance of a cylindrical dual-chamber Oscillating Water Column device," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:121:y:2018:i:c:p:133-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.