IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124014964.html
   My bibliography  Save this article

Insights into the role of A/B-site substitution in chemical looping gasification of cotton stalk for enhanced syngas production over La-Co-O based perovskite oxygen carriers

Author

Listed:
  • Yan, Jingchun
  • Lai, Junjie
  • Yan, Yongbo
  • Liu, Weidong
  • Shen, Laihong
  • Yang, Li

Abstract

Biomass chemical looping gasification (BCLG) is an emerging technology for efficient and clean utilization of cotton stalk (CS) to produce high-quality syngas. Among various oxygen carriers, perovskite oxides are holding an ever-increasing position in BCLG due to their unique structural properties and compositional flexibilities. However, research on perovskite-type oxygen carriers mostly focused on Fe-based oxides, and there is little in-depth investigation of Co-based perovskite and the role of A/B site substitution in the BCLG process. Herein, the LaCoO3 perovskite is selected as the basic oxygen carrier, and Sr, Fe are further doped on the A/B-site to form LaCo1-xFexO3 (x = 0, 0.2, 0.4, 0.6, 0.8, 1) and La1-ySryCoO3 (y = 0, 0.2, 0.4, 0.6, 0.8) series. Effects of perovskite type, gasification temperature, steam volume fraction and oxygen carrier mass fraction of the BCLG performance are investigated. Results indicate that La0.6Sr0.4CoO3 and LaCo0.2Fe0.8O3 exhibit enhanced syngas production with the maximum of 1.304 m3/kg and 1.188 m3/kg, respectively, and outstanding cyclic stability at optimal reaction conditions. Further characterizations including H2-TPR, XPS and EPR analysis reveal that Sr substitution facilitate the formation of oxygen vacancies and adsorbed oxygen species, while Fe doping leads to the increasing concentration of oxygen vacancies and surface lattice oxygen species. Combined with the experimental and characterization results, it is deduced that the oxygen vacancies which promote the adsorption of reactants and accelerate the migration of bulk lattice oxygen, play the key role in the enhanced BCLG performance.

Suggested Citation

  • Yan, Jingchun & Lai, Junjie & Yan, Yongbo & Liu, Weidong & Shen, Laihong & Yang, Li, 2024. "Insights into the role of A/B-site substitution in chemical looping gasification of cotton stalk for enhanced syngas production over La-Co-O based perovskite oxygen carriers," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014964
    DOI: 10.1016/j.renene.2024.121428
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121428?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    2. Zhao, Kun & He, Fang & Huang, Zhen & Wei, Guoqiang & Zheng, Anqing & Li, Haibin & Zhao, Zengli, 2016. "Perovskite-type oxides LaFe1−xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production," Applied Energy, Elsevier, vol. 168(C), pages 193-203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theppitak, Sarut & Hungwe, Douglas & Ding, Lu & Xin, Dai & Yu, Guangsuo & Yoshikawa, Kunio, 2020. "Comparison on solid biofuel production from wet and dry carbonization processes of food wastes," Applied Energy, Elsevier, vol. 272(C).
    2. Iñaki Adánez-Rubio & Antón Pérez-Astray & Alberto Abad & Pilar Gayán & Luis F. Diego & Juan Adánez, 2019. "Chemical looping with oxygen uncoupling: an advanced biomass combustion technology to avoid CO2 emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1293-1306, October.
    3. Wang, Yuan & Zhu, Lin & He, Yangdong & Yu, Jianting & Zhang, Chaoli & Wang, Zi, 2023. "Comparative exergoeconomic analysis of atmosphere and pressurized CLC power plants coupled with supercritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    4. Akbari-Emadabadi, S. & Rahimpour, M.R. & Hafizi, A. & Keshavarz, P., 2017. "Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 206(C), pages 51-62.
    5. Abad, A. & Pérez-Vega, R. & de Diego, L.F. & Gayán, P. & Izquierdo, M.T. & García-Labiano, F. & Adánez, J., 2019. "Thermochemical assessment of chemical looping assisted by oxygen uncoupling with a MnFe-based oxygen carrier," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Xiang, Dong & Jin, Tong & Lei, Xinru & Liu, Shuai & Jiang, Yong & Dong, Zhongbing & Tao, Quanbao & Cao, Yan, 2018. "The high efficient synthesis of natural gas from a joint-feedstock of coke-oven gas and pulverized coke via a chemical looping combustion scheme," Applied Energy, Elsevier, vol. 212(C), pages 944-954.
    7. Negri, Valentina & Galán-Martín, Ángel & Pozo, Carlos & Fajardy, Mathilde & Reiner, David M. & Mac Dowell, Niall & Guillén-Gosálbez, Gonzalo, 2021. "Life cycle optimization of BECCS supply chains in the European Union," Applied Energy, Elsevier, vol. 298(C).
    8. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Zhao, Xiaotong & Sun, Xiaohang, 2017. "Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations," Applied Energy, Elsevier, vol. 206(C), pages 126-133.
    9. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    10. Lu, Chunqiang & Li, Kongzhai & Wang, Hua & Zhu, Xing & Wei, Yonggang & Zheng, Min & Zeng, Chunhua, 2018. "Chemical looping reforming of methane using magnetite as oxygen carrier: Structure evolution and reduction kinetics," Applied Energy, Elsevier, vol. 211(C), pages 1-14.
    11. Xu, Ming-Xin & Wu, Hai-Bo & Wu, Ya-Chang & Wang, Han-Xiao & Ouyang, Hao-Dong & Lu, Qiang, 2021. "Design and evaluation of a novel system for the flue gas compression and purification from the oxy-fuel combustion process," Applied Energy, Elsevier, vol. 285(C).
    12. Lin, Yousheng & Hu, Zhifeng & Ge, Ya & Xiao, Hanmin & Zhang, Gang & He, Qing, 2023. "Chemical looping with oxygen uncoupling of biomass-derived hydrochar with Cu-based oxygen carriers modified by alkaline earth metals," Energy, Elsevier, vol. 280(C).
    13. Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Donghoon Shin & Akhil Francis & Purushothaman Vellayani Aravind & Theo Woudstra & Wiebren de Jong & Dirk Roekaerts, 2022. "Numerical Evaluation of Biochar Production Performance of Downdraft Gasifier by Thermodynamic Model," Energies, MDPI, vol. 15(20), pages 1-18, October.
    15. Wei, Guoqiang & Zhou, Huan & Huang, Zhen & Zheng, Anqing & Zhao, Kun & Lin, Yan & Chang, Guozhang & Zhao, Zengli & Li, Haibin & Fang, Yitian, 2021. "Reaction performance of Ce-enhanced hematite oxygen carrier in chemical looping reforming of biomass pyrolyzed gas coupled with CO2 splitting," Energy, Elsevier, vol. 215(PB).
    16. Igor Korobiichuk & Viktorij Mel’nick & Volodimir Karachun & Vladyslav Shybetskyi, 2021. "Investigation of Optimization of Combustion Processes in the Engine of Combat Vehicles by Use of Disk Structure," Energies, MDPI, vol. 14(21), pages 1-21, October.
    17. Pérez-Vega, R. & Abad, A. & Izquierdo, M.T. & Gayán, P. & de Diego, L.F. & Adánez, J., 2019. "Evaluation of Mn-Fe mixed oxide doped with TiO2 for the combustion with CO2 capture by Chemical Looping assisted by Oxygen Uncoupling," Applied Energy, Elsevier, vol. 237(C), pages 822-835.
    18. Jiang, Jintao & Li, Chunxi & Kong, Mengdi & Ye, Xuemin, 2023. "Insights into 4E evaluation of a novel solar-assisted gas-fired decarburization power generation system with oxygen-enriched combustion," Energy, Elsevier, vol. 278(C).
    19. Danilov, Nikolay & Lyagaeva, Julia & Vdovin, Gennady & Medvedev, Dmitry, 2019. "Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes," Applied Energy, Elsevier, vol. 237(C), pages 924-934.
    20. Abhishek Anand & Kaustubh Tripathi & Amit Kumar & Suresh Gupta & Smita Raghuvanshi & Sanjay Kumar Verma, 2021. "Bio-Mitigation of Carbon Dioxide Using Desmodesmus sp. in the Custom-Designed Pilot-Scale Loop Photobioreactor," Sustainability, MDPI, vol. 13(17), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.