IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124014459.html
   My bibliography  Save this article

Microalgae bio-reactive façade: System thermal–biological optimization

Author

Listed:
  • Pozzobon, Victor

Abstract

This article explores numerically the biotechnological performances of microalgae biofaçade. The model computes the system’s thermal behavior using a radiative-convective approach accounting for location on Earth and actual weather data. In a coupled manner, it simulates the microalgae culture behavior, i.e. light-driven growth and cell pigment content acclimation. In addition, it features refinement such as wavelength-dependent biomass optical properties and thermal-modulated biological rates. Thanks to this model, operation strategies and design possibilities were evaluated using actual weather data for a biofaçade module deployed in Marseille in 2023. Investigations revealed that a semi-batch mode of operation, while simplistic, is the most efficient way to operate a biofaçade if sole biological production is considered (about 18.0 ± 0.9 kg per year, 2.44 ± 0.12 g/L output concentration). However, if intended as an office glazing, turbidostat mode of operation should be preferred for aesthetic and visual comfort reasons (about 19.1 ± 1.1 kg per year, 0.64 ± 0.07 g/L output concentration). System optimization also confirmed the experimental observation that the system could be prone to overheating. Nevertheless, while overheating can be mitigated by increasing the reservoir thickness, this strategy is detrimental to the average output concentration. Finally, location-specific optimization revealed that a standard biofaçade module could be deployed over France, and system performances are derived for the whole country thanks to the weather forecast agency data.

Suggested Citation

  • Pozzobon, Victor, 2024. "Microalgae bio-reactive façade: System thermal–biological optimization," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014459
    DOI: 10.1016/j.renene.2024.121377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.