IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124014459.html
   My bibliography  Save this article

Microalgae bio-reactive façade: System thermal–biological optimization

Author

Listed:
  • Pozzobon, Victor

Abstract

This article explores numerically the biotechnological performances of microalgae biofaçade. The model computes the system’s thermal behavior using a radiative-convective approach accounting for location on Earth and actual weather data. In a coupled manner, it simulates the microalgae culture behavior, i.e. light-driven growth and cell pigment content acclimation. In addition, it features refinement such as wavelength-dependent biomass optical properties and thermal-modulated biological rates. Thanks to this model, operation strategies and design possibilities were evaluated using actual weather data for a biofaçade module deployed in Marseille in 2023. Investigations revealed that a semi-batch mode of operation, while simplistic, is the most efficient way to operate a biofaçade if sole biological production is considered (about 18.0 ± 0.9 kg per year, 2.44 ± 0.12 g/L output concentration). However, if intended as an office glazing, turbidostat mode of operation should be preferred for aesthetic and visual comfort reasons (about 19.1 ± 1.1 kg per year, 0.64 ± 0.07 g/L output concentration). System optimization also confirmed the experimental observation that the system could be prone to overheating. Nevertheless, while overheating can be mitigated by increasing the reservoir thickness, this strategy is detrimental to the average output concentration. Finally, location-specific optimization revealed that a standard biofaçade module could be deployed over France, and system performances are derived for the whole country thanks to the weather forecast agency data.

Suggested Citation

  • Pozzobon, Victor, 2024. "Microalgae bio-reactive façade: System thermal–biological optimization," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014459
    DOI: 10.1016/j.renene.2024.121377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elmalky, Adham M. & Araji, Mohamad T., 2023. "Multi-objective problem of optimizing heat transfer and energy production in algal bioreactive façades," Energy, Elsevier, vol. 268(C).
    2. Bornatico, Raffaele & Pfeiffer, Michael & Witzig, Andreas & Guzzella, Lino, 2012. "Optimal sizing of a solar thermal building installation using particle swarm optimization," Energy, Elsevier, vol. 41(1), pages 31-37.
    3. Rizwan, Muhammad & Mujtaba, Ghulam & Memon, Sheraz Ahmed & Lee, Kisay & Rashid, Naim, 2018. "Exploring the potential of microalgae for new biotechnology applications and beyond: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 394-404.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pozzobon, Victor, 2024. "Microalgae bio-reactive façade: A model coupling weather, illumination, temperature, and cell growth over the year," Renewable Energy, Elsevier, vol. 237(PB).
    2. Héctor Rodríguez-Rángel & Dulce María Arias & Luis Alberto Morales-Rosales & Victor Gonzalez-Huitron & Mario Valenzuela Partida & Joan García, 2022. "Machine Learning Methods Modeling Carbohydrate-Enriched Cyanobacteria Biomass Production in Wastewater Treatment Systems," Energies, MDPI, vol. 15(7), pages 1-18, March.
    3. Alaia Sola & Cristina Corchero & Jaume Salom & Manel Sanmarti, 2018. "Simulation Tools to Build Urban-Scale Energy Models: A Review," Energies, MDPI, vol. 11(12), pages 1-24, November.
    4. Patel, Anil Kumar & Singhania, Reeta Rani & Dong, Cheng-Di & Obulisami, Parthiba Karthikeyan & Sim, Sang Jun, 2021. "Mixotrophic biorefinery: A promising algal platform for sustainable biofuels and high value coproducts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Fux, Samuel F. & Benz, Michael J. & Guzzella, Lino, 2013. "Economic and environmental aspects of the component sizing for a stand-alone building energy system: A case study," Renewable Energy, Elsevier, vol. 55(C), pages 438-447.
    6. Calise, Francesco & Dentice d'Accadia, Massimo & Palombo, Adolfo & Vanoli, Laura, 2013. "Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors," Energy, Elsevier, vol. 61(C), pages 72-86.
    7. Singh, Kripal & Ansari, Faiz Ahmad & Ingle, Kapilkumar Nivrutti & Gupta, Sanjay Kumar & Ahirwal, Jitendra & Dhyani, Shalini & Singh, Shraddha & Abhilash, P.C. & Rawat, Ismael & Byun, Chaeho & Bux, Fai, 2023. "Microalgae from wastewaters to wastelands: Leveraging microalgal research conducive to achieve the UN Sustainable Development Goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    9. Thiviyanathan, Vimal Angela & Ker, Pin Jern & Hoon Tang, Shirley Gee & Amin, Eric PP. & Yee, Willy & Hannan, M.A. & Jamaludin, Zaini & Nghiem, Long D. & Indra Mahlia, Teuku Meurah, 2024. "Microalgae biomass and biomolecule quantification: Optical techniques, challenges and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Bornatico, Raffaele & Hüssy, Jonathan & Witzig, Andreas & Guzzella, Lino, 2013. "Surrogate modeling for the fast optimization of energy systems," Energy, Elsevier, vol. 57(C), pages 653-662.
    11. Ehab M. Ammar & Neha Arora & George P. Philippidis, 2020. "The Prospects of Agricultural and Food Residue Hydrolysates for Sustainable Production of Algal Products," Energies, MDPI, vol. 13(23), pages 1-25, December.
    12. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    13. Kumar, B. Ramesh & Mathimani, Thangavel & Sudhakar, M.P. & Rajendran, Karthik & Nizami, Abdul-Sattar & Brindhadevi, Kathirvel & Pugazhendhi, Arivalagan, 2021. "A state of the art review on the cultivation of algae for energy and other valuable products: Application, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Yani Aranguren Díaz & Edy Monterroza Martínez & Laura Carillo García & María C. Serrano & Elwi Machado Sierra, 2022. "Phycoremediation as a Strategy for the Recovery of Marsh and Wetland with Potential in Colombia," Resources, MDPI, vol. 11(2), pages 1-20, January.
    15. Bahria, Sofiane & Amirat, Madjid & Hamidat, Abderrahmen & El Ganaoui, Mohammed & El Amine Slimani, Mohamed, 2016. "Parametric study of solar heating and cooling systems in different climates of Algeria – A comparison between conventional and high-energy-performance buildings," Energy, Elsevier, vol. 113(C), pages 521-535.
    16. Abraham Guzmán-Palomino & Luciano Aguilera-Vázquez & Héctor Hernández-Escoto & Pedro Martin García-Vite, 2021. "Sensitivity, Equilibria, and Lyapunov Stability Analysis in Droop’s Nonlinear Differential Equation System for Batch Operation Mode of Microalgae Culture Systems," Mathematics, MDPI, vol. 9(18), pages 1-20, September.
    17. Mahmoudimehr, Javad & Sebghati, Parvin, 2019. "A novel multi-objective Dynamic Programming optimization method: Performance management of a solar thermal power plant as a case study," Energy, Elsevier, vol. 168(C), pages 796-814.
    18. Tanvir, Rahamat Ullah & Zhang, Jianying & Canter, Timothy & Chen, Dick & Lu, Jingrang & Hu, Zhiqiang, 2021. "Harnessing solar energy using phototrophic microorganisms: A sustainable pathway to bioenergy, biomaterials, and environmental solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    19. D'Agostino, Diana & De Falco, Francesco & Minelli, Federico & Minichiello, Francesco, 2024. "New robust multi-criteria decision-making framework for thermal insulation of buildings under conflicting stakeholder interests," Applied Energy, Elsevier, vol. 376(PA).
    20. Li, Fanghua & Sweeney, Daniel J. & Dai, Yanjun & Wang, Chi-Hwa, 2021. "Effect of novel Ni2P-loaded catalysts on algal pyrolysis bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.