IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipas0306261924016453.html
   My bibliography  Save this article

New robust multi-criteria decision-making framework for thermal insulation of buildings under conflicting stakeholder interests

Author

Listed:
  • D'Agostino, Diana
  • De Falco, Francesco
  • Minelli, Federico
  • Minichiello, Francesco

Abstract

The choice of thermal insulation technology for existing building retrofit can be a complex multi-criteria decision-making (MCDM) problem characterized by multiple stakeholders with conflicting interests. The conflicting interests of the building owners and the policymakers could negatively influence the adoption of low-carbon energy retrofit measures by building possessors, slowing down the progress toward sustainable development. The investigation of this issue is, therefore, crucial to support more informed decisions and offer policymakers useful insights to develop future economic incentives for energy refurbishment of buildings. Most of the existing MCDM studies on the subject do not emphasize the differences among different stakeholders nor consider the outcomes' robustness. To overcome this gap, this paper integrates multi-stakeholder analyses and robustness assessments to provide broad-spectrum and reliable results. An innovative robust MCDM framework for building thermal insulation under conflicting stakeholder interests is proposed and tested on a real case study building (located in Southern Italy) using building dynamic energy simulation. Several alternatives of thermal insulation are evaluated under environmental, energy, and economic key performance indicators (KPIs). The Analytic Hierarchy Process is used to define criteria weights for conflicting decision-makers representing collectivity (policymakers) and private interests. TOPSIS, VIKOR, WASPAS, and MULTIMOORA methods are integrated to perform initial rankings of the alternatives. A rank similarity analysis is performed to evaluate the consensus between MCDM methods, and an ensemble ranking is obtained for each decision-maker using an approach based on the half-quadratic theory. A Confidence Index and a Trust Level are used to evaluate the agreement among the MCDM approaches, verifying the reliability of the final ensemble ranking. The robustness of the framework is attained by complying with well-established literature guidance. The hybrid MCDM analysis showed that porous materials like expanded clay and expanded perlite lead to better results under the KPIs investigated. The worst performances are attained by vacuum insulation panels and aerogel, mainly due to high values of embodied CO2 emissions and long payback periods. Insights upon the performance of different thermal insulating alternatives are also highlighted by the study and a stakeholder comparative analysis demonstrates that global rankings obtained for the different decision-makers show some similarities, but also important deviations, and a full compromise solution is not achieved.

Suggested Citation

  • D'Agostino, Diana & De Falco, Francesco & Minelli, Federico & Minichiello, Francesco, 2024. "New robust multi-criteria decision-making framework for thermal insulation of buildings under conflicting stakeholder interests," Applied Energy, Elsevier, vol. 376(PA).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924016453
    DOI: 10.1016/j.apenergy.2024.124262
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elmalky, Adham M. & Araji, Mohamad T., 2023. "Multi-objective problem of optimizing heat transfer and energy production in algal bioreactive façades," Energy, Elsevier, vol. 268(C).
    2. Jalil Heidary Dahooie & Ali Husseinzadeh Kashan & Zahra Shoaei Naeini & Amir Salar Vanaki & Edmundas Kazimieras Zavadskas & Zenonas Turskis, 2022. "A Hybrid Multi-Criteria-Decision-Making Aggregation Method and Geographic Information System for Selecting Optimal Solar Power Plants in Iran," Energies, MDPI, vol. 15(8), pages 1-20, April.
    3. Indre Siksnelyte-Butkiene & Dalia Streimikiene & Tomas Balezentis & Virgilijus Skulskis, 2021. "A Systematic Literature Review of Multi-Criteria Decision-Making Methods for Sustainable Selection of Insulation Materials in Buildings," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    4. Schwartz, Yair & Raslan, Rokia & Mumovic, Dejan, 2016. "Implementing multi objective genetic algorithm for life cycle carbon footprint and life cycle cost minimisation: A building refurbishment case study," Energy, Elsevier, vol. 97(C), pages 58-68.
    5. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    6. Ciardiello, Adriana & Rosso, Federica & Dell'Olmo, Jacopo & Ciancio, Virgilio & Ferrero, Marco & Salata, Ferdinando, 2020. "Multi-objective approach to the optimization of shape and envelope in building energy design," Applied Energy, Elsevier, vol. 280(C).
    7. Elmalky, Adham M. & Araji, Mohamad T., 2024. "Optimization models for photosynthetic bioenergy generation in building façades," Renewable Energy, Elsevier, vol. 228(C).
    8. Ahadi, Pedram & Fakhrabadi, Farbod & Pourshaghaghy, Alireza & Kowsary, Farshad, 2023. "Optimal site selection for a solar power plant in Iran via the Analytic Hierarchy Process (AHP)," Renewable Energy, Elsevier, vol. 215(C).
    9. Tostado-Véliz, Marcos & Kamel, Salah & Aymen, Flah & Jurado, Francisco, 2022. "A novel hybrid lexicographic-IGDT methodology for robust multi-objective solution of home energy management systems," Energy, Elsevier, vol. 253(C).
    10. Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
    11. Schiavoni, S. & D׳Alessandro, F. & Bianchi, F. & Asdrubali, F., 2016. "Insulation materials for the building sector: A review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 988-1011.
    12. Aditya, L. & Mahlia, T.M.I. & Rismanchi, B. & Ng, H.M. & Hasan, M.H. & Metselaar, H.S.C. & Muraza, Oki & Aditiya, H.B., 2017. "A review on insulation materials for energy conservation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1352-1365.
    13. Małgorzata Basińska & Dobrosława Kaczorek & Halina Koczyk, 2020. "Building Thermo-Modernisation Solution Based on the Multi-Objective Optimisation Method," Energies, MDPI, vol. 13(6), pages 1-19, March.
    14. Feng, Yanchao & Shoaib, Muhammad & Akram, Rabia & Alnafrah, Ibrahim & Ai, Fengyi & Irfan, Muhammad, 2024. "Assessing and prioritizing biogas energy barriers: A sustainable roadmap for energy security," Renewable Energy, Elsevier, vol. 223(C).
    15. Nilsen Kundakcı, 2016. "Combined Multi-Criteria Decision Making Approach Based on MACBETH and MULTI-MOORA Methods," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 4(1), pages 17-26, April.
    16. Gang Kou & Yanqun Lu & Yi Peng & Yong Shi, 2012. "Evaluation Of Classification Algorithms Using Mcdm And Rank Correlation," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 197-225.
    17. Wu, Wei & Skye, Harrison M. & Domanski, Piotr A., 2018. "Selecting HVAC systems to achieve comfortable and cost-effective residential net-zero energy buildings," Applied Energy, Elsevier, vol. 212(C), pages 577-591.
    18. Mohammadi, Majid & Rezaei, Jafar, 2020. "Ensemble ranking: Aggregation of rankings produced by different multi-criteria decision-making methods," Omega, Elsevier, vol. 96(C).
    19. Rafael Batres & Yasaman Dadras & Farzad Mostafazadeh & Miroslava Kavgic, 2023. "MEVO: A Metamodel-Based Evolutionary Optimizer for Building Energy Optimization," Energies, MDPI, vol. 16(20), pages 1-24, October.
    20. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    21. Yanchao Feng & Juan Zhang & Renfu Luo & Yuxi Pan & Shuhai Niu, 2024. "How does the opening of high-speed rail drive energy restructuring? New micro evidence from China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    22. Petrillo, Antonella & De Felice, Fabio & Jannelli, Elio & Autorino, Claudio & Minutillo, Mariagiovanna & Lavadera, Antonio Lubrano, 2016. "Life cycle assessment (LCA) and life cycle cost (LCC) analysis model for a stand-alone hybrid renewable energy system," Renewable Energy, Elsevier, vol. 95(C), pages 337-355.
    23. Galatioto, A. & Ciulla, G. & Ricciu, R., 2017. "An overview of energy retrofit actions feasibility on Italian historical buildings," Energy, Elsevier, vol. 137(C), pages 991-1000.
    24. Qiong Shen & Rui Wu & Yuxi Pan & Yanchao Feng, 2024. "Explaining and modeling the impacts of inclusive finance on CO2 emissions in China integrated the intermediary role of energy poverty," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    25. Mohammad Ebrahim Banihabib & Farkhondeh-Sadat Hashemi-Madani & Ali Forghani, 2017. "Comparison of Compensatory and non-Compensatory Multi Criteria Decision Making Models in Water Resources Strategic Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3745-3759, September.
    26. Roberta Moschetti & Helge Brattebø, 2017. "Combining Life Cycle Environmental and Economic Assessments in Building Energy Renovation Projects," Energies, MDPI, vol. 10(11), pages 1-17, November.
    27. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    28. Apostolopoulos, Vasilis & Mamounakis, Ioannis & Seitaridis, Andreas & Tagkoulis, Nikolas & Kourkoumpas, Dimitrios-Sotirios & Iliadis, Petros & Angelakoglou, Komninos & Nikolopoulos, Nikolaos, 2023. "Αn integrated life cycle assessment and life cycle costing approach towards sustainable building renovation via a dynamic online tool," Applied Energy, Elsevier, vol. 334(C).
    29. Feng, Yanchao & Zhang, Juan & Geng, Yong & Jin, Shurui & Zhu, Ziyi & Liang, Zhou, 2023. "Explaining and modeling the reduction effect of low-carbon energy transition on energy intensity: Empirical evidence from global data," Energy, Elsevier, vol. 281(C).
    30. Willem Karel M. Brauers & Romualdas Ginevičius, 2009. "Robustness in regional development studies. The case of Lithuania," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 10(2), pages 121-140, February.
    31. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    32. Wang, Shunli & Fan, Yongcun & Jin, Siyu & Takyi-Aninakwa, Paul & Fernandez, Carlos, 2023. "Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mateusz Piwowarski & Danuta Miłaszewicz & Małgorzata Łatuszyńska & Mariusz Borawski & Kesra Nermend, 2018. "Application of the Vector Measure Construction Method and Technique for Order Preference by Similarity Ideal Solution for the Analysis of the Dynamics of Changes in the Poverty Levels in the European ," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    2. Indre Siksnelyte-Butkiene & Dalia Streimikiene & Tomas Balezentis & Virgilijus Skulskis, 2021. "A Systematic Literature Review of Multi-Criteria Decision-Making Methods for Sustainable Selection of Insulation Materials in Buildings," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    3. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    4. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Alok K. Pandey & R. Krishankumar & Dragan Pamucar & Fausto Cavallaro & Abbas Mardani & Samarjit Kar & K. S. Ravichandran, 2021. "A Bibliometric Review on Decision Approaches for Clean Energy Systems under Uncertainty," Energies, MDPI, vol. 14(20), pages 1-27, October.
    6. Feng, Yanchao & Pan, Yuxi & Lu, Shan & Shi, Jiaxin, 2024. "Identifying the multiple nexus between geopolitical risk, energy resilience, and carbon emissions: Evidence from global data," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
    7. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    8. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    9. Jing Wang & Jian-Qiang Wang & Hong-Yu Zhang & Xiao-Hong Chen, 2017. "Distance-Based Multi-Criteria Group Decision-Making Approaches with Multi-Hesitant Fuzzy Linguistic Information," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1069-1099, July.
    10. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Lei Wang & Qing Liu & Tongle Yin, 2018. "Decision-making of investment in navigation safety improving schemes with application of cumulative prospect theory," Journal of Risk and Reliability, , vol. 232(6), pages 710-724, December.
    12. Yushi Wang & Beining Hu & Xianhai Meng & Runjin Xiao, 2024. "A Comprehensive Review on Technologies for Achieving Zero-Energy Buildings," Sustainability, MDPI, vol. 16(24), pages 1-26, December.
    13. Alaa Khadra & Mårten Hugosson & Jan Akander & Jonn Are Myhren, 2020. "Development of a Weight Factor Method for Sustainability Decisions in Building Renovation. Case Study Using Renobuild," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    14. Osseweijer, Floor J.W. & van den Hurk, Linda B.P. & Teunissen, Erik J.H.M. & van Sark, Wilfried G.J.H.M., 2018. "A comparative review of building integrated photovoltaics ecosystems in selected European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1027-1040.
    15. Claudia Fabiani & Anna Laura Pisello & Marco Barbanera & Luisa F. Cabeza & Franco Cotana, 2019. "Assessing the Potentiality of Animal Fat Based-Bio Phase Change Materials (PCM) for Building Applications: An Innovative Multipurpose Thermal Investigation," Energies, MDPI, vol. 12(6), pages 1-18, March.
    16. José Carlos Romero & Pedro Linares, 2021. "Multiple Criteria Decision-Making as an Operational Conceptualization of Energy Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    17. Dragan Pamučar & Ibrahim Badi & Korica Sanja & Radojko Obradović, 2018. "A Novel Approach for the Selection of Power-Generation Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya," Energies, MDPI, vol. 11(9), pages 1-25, September.
    18. Juin-Hao Ho & Gwo-Guang Lee & Ming-Tsang Lu, 2020. "Exploring the Implementation of a Legal AI Bot for Sustainable Development in Legal Advisory Institutions," Sustainability, MDPI, vol. 12(15), pages 1-17, July.
    19. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    20. Oner, Oytun & Khalilpour, Kaveh, 2022. "Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924016453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.