IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124012023.html
   My bibliography  Save this article

Coupling parameter analysis of photovoltaic double skin façade targeting photovoltaic etching ratio and cavity depth

Author

Listed:
  • Liu, Xingjiang
  • Shi, Xilong
  • Shen, Chao
  • Yang, Haotian
  • Wang, Julian

Abstract

The photovoltaic double skin façade (PV-DSF) represents the frontier of the advanced building envelope, whereas the prior parameter analysis had predominantly focused on the influence of individual factors. As two essential factors of PV-DSF, the photovoltaic etching ratio ϑ and cavity depth Dcav have garnered considerable academic attention, with little of them focusing on their coupling effect to energy performance. This paper investigates the impact of ϑ and Dcav using a spectrum-resolution numerical model, incorporating the concept of elementary effects derived from Morris method to quantify their interaction. The findings reveal that ϑ exhibits a non-monotonic impact, whereas the influence of Dcav is monotonic but non-linear. The optimal ϑ is found to be within the range of 30–50 %, while the lowest Dcav mostly outperforms other values, contrary to previous studies. This deviation is speculated to arise from the consideration of hot air generation energy. Furthermore, the variation of one factor can potentially alter the optimal value of the other. The second-order elementary effect between them demonstrates that their coupling effect is also non-linear and non-monotonic, with an impact as significant as that of Dcav alone. Overall, the correlations between ϑ and Dcav should be thoroughly considered during the design period.

Suggested Citation

  • Liu, Xingjiang & Shi, Xilong & Shen, Chao & Yang, Haotian & Wang, Julian, 2024. "Coupling parameter analysis of photovoltaic double skin façade targeting photovoltaic etching ratio and cavity depth," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124012023
    DOI: 10.1016/j.renene.2024.121134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124012023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shameri, M.A. & Alghoul, M.A. & Sopian, K. & Zain, M. Fauzi M. & Elayeb, Omkalthum, 2011. "Perspectives of double skin façade systems in buildings and energy saving," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1468-1475, April.
    2. Yu, Bendong & Li, Niansi & Ji, Jie & Wang, Chuyao, 2021. "Thermal, electrical and purification performance of a novel thermal-catalytic CdTe double-layer breathing window in winter," Renewable Energy, Elsevier, vol. 167(C), pages 313-332.
    3. Zhang, Chengyan & Ji, Jie & Wang, Chuyao & Ke, Wei & Xie, Hao & Yu, Bendong, 2022. "Experimental and numerical studies on the thermal and electrical performance of a CdTe ventilated window integrated with vacuum glazing," Energy, Elsevier, vol. 244(PB).
    4. Liu, Xingjiang & Shen, Chao & Bo, Rui & Wang, Julian & Ardabili, Neda Ghaeili, 2023. "Experimental investigation on the operation performance of photovoltaic double skin façade in winter," Energy, Elsevier, vol. 283(C).
    5. Zhang, Tiantian & Yang, Hongxing, 2019. "Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades," Applied Energy, Elsevier, vol. 242(C), pages 107-120.
    6. Liu, Xingjiang & Yang, Haotian & Wang, Chaojie & Shen, Chao & Bo, Rui & Hinkle, Laura & Wang, Julian, 2024. "Semi-experimental investigation on the energy performance of photovoltaic double skin façade with different façade materials," Energy, Elsevier, vol. 295(C).
    7. Weerasinghe, R.P.N.P. & Yang, R.J. & Wakefield, R. & Too, E. & Le, T. & Corkish, R. & Chen, S. & Wang, C., 2021. "Economic viability of building integrated photovoltaics: A review of forty-five (45) non-domestic buildings in twelve (12) western countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chengyan & Ji, Jie & Tang, Yayun & Ke, Wei, 2024. "Overall performance investigation of a CdTe double-skin ventilated facade integrated with a thermal catalytic air-type PV/T in heating and cooling seasons," Energy, Elsevier, vol. 292(C).
    2. Liu, Xingjiang & Yang, Haotian & Wang, Chaojie & Shen, Chao & Bo, Rui & Hinkle, Laura & Wang, Julian, 2024. "Semi-experimental investigation on the energy performance of photovoltaic double skin façade with different façade materials," Energy, Elsevier, vol. 295(C).
    3. Liu, Xingjiang & Shen, Chao & Bo, Rui & Wang, Julian & Ardabili, Neda Ghaeili, 2023. "Experimental investigation on the operation performance of photovoltaic double skin façade in winter," Energy, Elsevier, vol. 283(C).
    4. Tang, Yayun & Ji, Jie & Xie, Hao & Zhang, Chengyan & Tian, Xinyi, 2023. "Single- and double-inlet PV curtain wall systems using novel heat recovery technique for PV cooling, fresh and supply air handling: Design and performance assessment," Energy, Elsevier, vol. 282(C).
    5. Zhang, Chengyan & Ji, Jie & Ke, Wei & Tang, Yayun, 2024. "Comprehensive performance investigation of a novel thermal catalytic semi-transparent PV double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 300(C).
    6. Zhao, Xiaoqing & Wei, An & Zou, Shaokun & Dong, Qichang & Qi, Jiacheng & Song, Ye & Shi, Long, 2024. "Controlling naturally ventilated double-skin façade to reduce energy consumption in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    7. Zhou, Hao & Yang, Hongxing & Peng, Jinqing, 2024. "Solar PV vacuum glazing (SVG) insulated building facades: Thermal and electrical performances," Applied Energy, Elsevier, vol. 376(PB).
    8. Assoa, Ya Brigitte & Ratovonkery, Julie & Ménézo, Christophe & Morlot, Rodolphe, 2024. "Towards a bio-inspired design of a photovoltaic facade," Renewable Energy, Elsevier, vol. 229(C).
    9. Wang, Chuyao & Li, Niansi & Gu, Tao & Ji, Jie & Yu, Bendong, 2022. "Design and performance investigation of a novel double-skin ventilated window integrated with air-purifying blind," Energy, Elsevier, vol. 254(PC).
    10. Hossein Arasteh & Wahid Maref & Hamed H. Saber, 2023. "Energy and Thermal Performance Analysis of PCM-Incorporated Glazing Units Combined with Passive and Active Techniques: A Review Study," Energies, MDPI, vol. 16(3), pages 1-42, January.
    11. Ke, Wei & Ji, Jie & Zhang, Chengyan & Wang, Chuyao & Xie, Hao & Tian, Xinyi, 2023. "A seasonal experimental study on a novel CdTe based multi-layer PV ventilated window system integrated with PCM under different operating modes," Energy, Elsevier, vol. 285(C).
    12. Xu, Lijie & Hu, Hui & Ji, Jie & Cai, Jingyong & Dai, Leyang, 2024. "Hybrid energy saving performance of translucent CdTe photovoltaic window on small ship under sailing condition," Energy, Elsevier, vol. 295(C).
    13. Barbosa, Sabrina & Ip, Kenneth, 2014. "Perspectives of double skin façades for naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1019-1029.
    14. Sofia Pastori & Riccardo Mereu & Enrico Sergio Mazzucchelli & Stefano Passoni & Giovanni Dotelli, 2021. "Energy Performance Evaluation of a Ventilated Façade System through CFD Modeling and Comparison with International Standards," Energies, MDPI, vol. 14(1), pages 1-26, January.
    15. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    16. Pan, Zhongjie & Liu, Jia & Wu, Huijun & Luo, Diqian & Huang, Jialong, 2025. "Theoretical-experimental-simulation research on thermal-daylight-electrical performance of PV glazing in high-rise office building in the Greater Bay Area," Applied Energy, Elsevier, vol. 378(PA).
    17. Tao, Yao & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Impact of wind on solar-induced natural ventilation through double-skin facade," Applied Energy, Elsevier, vol. 364(C).
    18. Agnieszka Leśniak & Jakub Balicki, 2016. "Selection of Façades Finishing Technology for a Commercial Building Using Multi-Criteria Analysis," Entrepreneurial Business and Economics Review, Centre for Strategic and International Entrepreneurship at the Cracow University of Economics., vol. 4(2), pages 67-79.
    19. Wijeratne, W.M. Pabasara Upalakshi & Samarasinghalage, Tharushi Imalka & Yang, Rebecca Jing & Wakefield, Ron, 2022. "Multi-objective optimisation for building integrated photovoltaics (BIPV) roof projects in early design phase," Applied Energy, Elsevier, vol. 309(C).
    20. Navarro, Lidia & de Gracia, Alvaro & Colclough, Shane & Browne, Maria & McCormack, Sarah J. & Griffiths, Philip & Cabeza, Luisa F., 2016. "Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems," Renewable Energy, Elsevier, vol. 88(C), pages 526-547.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124012023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.