IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v230y2024ics0960148124009443.html
   My bibliography  Save this article

Computational investigation and optimization of the bulb turbine for ultra-low head application

Author

Listed:
  • Maisuria, Manish
  • Ratadiya, Lila
  • Patel, Amit

Abstract

The Indian River, which is celebrated for its breathtaking beauty and diverse heritage of cultures, has an extensive amount of potential for producing green hydroelectric electricity. 7.5 % of the world's energy came from renewable sources in 2022, with India making up 36 % of the share and growing. India has nearly reached the 5 GW objective for small hydro projects and has reached 68 % of its 175 GW renewable energy ambition. At 90 % efficiency, bulb turbines are hydroelectric turbines that produce power from water, making them a perfect choice for high flow rates and low water head conditions. In order to optimize bulb turbines, this research investigates the use of computational fluid dynamics (CFD) to assess variables including the number of guiding vanes, the angle of the draft tube, and the design of the blades. According to studies, efficiency is increased when guiding vanes increase. The geometry of guiding vanes also has a significant impact on performance. Draft tubes, which restore kinetic energy from water entering the turbine, can enhance efficiency with proper design. Adding anti-cavitation capabilities to runner blades improves performance even further. CFD models verify these conclusions, with little variations from the field data. By fine-tuning important parameters such as 14 guiding vanes and adjusting the draft tube angle to 2.5°, the turbine's efficiency jumped from 87 % to 97 %.

Suggested Citation

  • Maisuria, Manish & Ratadiya, Lila & Patel, Amit, 2024. "Computational investigation and optimization of the bulb turbine for ultra-low head application," Renewable Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124009443
    DOI: 10.1016/j.renene.2024.120876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivana Lučin & Ante Sikirica & Marija Šiško Kuliš & Zoran Čarija, 2022. "Investigation of Efficient Optimization Approach to the Modernization of Francis Turbine Draft Tube Geometry," Mathematics, MDPI, vol. 10(21), pages 1-22, November.
    2. Ahn, Soo-Hwang & Tian, Hong & Cao, Jingwei & Duo, Wenzhi & Wang, Zhengwei & Cui, Jianhua & Chen, Lin & Li, Yang & Huang, Guoping & Yu, Yunpeng, 2023. "Hydraulic performances of a bulb turbine with full field reservoir model based on entropy production analysis," Renewable Energy, Elsevier, vol. 211(C), pages 347-360.
    3. Chen, J. & Yang, H.X. & Liu, C.P. & Lau, C.H. & Lo, M., 2013. "A novel vertical axis water turbine for power generation from water pipelines," Energy, Elsevier, vol. 54(C), pages 184-193.
    4. Chen, Huixiang & Zhou, Daqing & Kan, Kan & Guo, Junxun & Zheng, Yuan & Binama, Maxime & Xu, Zhe & Feng, Jiangang, 2021. "Transient characteristics during the co-closing guide vanes and runner blades of a bulb turbine in load rejection process," Renewable Energy, Elsevier, vol. 165(P2), pages 28-41.
    5. Cao, Jingwei & Luo, Yongyao & Presas, Alexandre & Ahn, Soo-Hwang & Wang, Zhengwei & Huang, Xingxing & Liu, Yan, 2022. "Influence of rotation on the modal characteristics of a bulb turbine unit rotor," Renewable Energy, Elsevier, vol. 187(C), pages 887-895.
    6. Ahn, Soo-Hwang & Zhou, Xuezhi & He, Lingyan & Luo, Yongyao & Wang, Zhengwei, 2020. "Numerical estimation of prototype hydraulic efficiency in a low head power station based on gross head conditions," Renewable Energy, Elsevier, vol. 153(C), pages 175-181.
    7. Samora, Irene & Hasmatuchi, Vlad & Münch-Alligné, Cécile & Franca, Mário J. & Schleiss, Anton J. & Ramos, Helena M., 2016. "Experimental characterization of a five blade tubular propeller turbine for pipe inline installation," Renewable Energy, Elsevier, vol. 95(C), pages 356-366.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huixiang Chen & Kan Kan & Haolan Wang & Maxime Binama & Yuan Zheng & Hui Xu, 2021. "Development and Numerical Performance Analysis of a Micro Turbine in a Tap-Water Pipeline," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    2. Zhang, Guangchao & Lv, Kai & Xie, Yudong & Wang, Yong & Shan, Kunshan, 2023. "Performance study of a control valve with energy harvesting based on a modified passive model," Energy, Elsevier, vol. 285(C).
    3. Pérez-Sánchez, Modesto & Sánchez-Romero, Francisco Javier & López-Jiménez, P. Amparo & Ramos, Helena M., 2018. "PATs selection towards sustainability in irrigation networks: Simulated annealing as a water management tool," Renewable Energy, Elsevier, vol. 116(PA), pages 234-249.
    4. Lima, Gustavo Meirelles & Luvizotto, Edevar & Brentan, Bruno M., 2017. "Selection and location of Pumps as Turbines substituting pressure reducing valves," Renewable Energy, Elsevier, vol. 109(C), pages 392-405.
    5. Bizhanpour, Ali & Hasanzadeh, Nima & Najafi, Amir F. & Magagnato, Franco, 2023. "Investigation of different deflector geometry and mechanism effect on the performance of an in-pipe hydro Savonius turbine," Applied Energy, Elsevier, vol. 350(C).
    6. Payambarpour, S. Abdolkarim & Najafi, Amir F. & Magagnato, Franco, 2020. "Investigation of deflector geometry and turbine aspect ratio effect on 3D modified in-pipe hydro Savonius turbine: Parametric study," Renewable Energy, Elsevier, vol. 148(C), pages 44-59.
    7. Yao, Yao & Shen, Zhicheng & Wang, Qiliang & Du, Jiyun & Lu, Lin & Yang, Hongxing, 2023. "Development of an inline bidirectional micro crossflow turbine for hydropower harvesting from water supply pipelines," Applied Energy, Elsevier, vol. 329(C).
    8. Daniel Biner & Vlad Hasmatuchi & Laurent Rapillard & Samuel Chevailler & François Avellan & Cécile Münch-Alligné, 2021. "DuoTurbo: Implementation of a Counter-Rotating Hydroturbine for Energy Recovery in Drinking Water Networks," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    9. Nishi, Yasuyuki & Mori, Nozomi & Yamada, Naoki & Inagaki, Terumi, 2022. "Study on the design method for axial flow runner that combines design of experiments, response surface method, and optimization method to one-dimensional design method," Renewable Energy, Elsevier, vol. 185(C), pages 96-110.
    10. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.
    11. Yang, Sun Sheng & Zhao, Erce & Fang, Tian & Kesharwani, Siddhi & Chaudhary, Shubham & Singh, Punit, 2023. "Towards an optimum pitch to chord ratio and establishing its scaling effects in low head Kaplan propellers," Renewable Energy, Elsevier, vol. 204(C), pages 750-772.
    12. Geng, Xinmin & Zhou, Ye & Zhao, Weiqiang & Shi, Li & Chen, Diyi & Bi, Xiaojian & Xu, Beibei, 2024. "Pricing ancillary service of a Francis hydroelectric generating system to promote renewable energy integration in a clean energy base: Tariff compensation of deep peak regulation," Renewable Energy, Elsevier, vol. 226(C).
    13. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    14. Delgado, J. & Ferreira, J.P. & Covas, D.I.C. & Avellan, F., 2019. "Variable speed operation of centrifugal pumps running as turbines. Experimental investigation," Renewable Energy, Elsevier, vol. 142(C), pages 437-450.
    15. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    16. Du, Jiyun & Ge, Zhan & Wu, Hao & Shi, Xudong & Yuan, Fangyang & Yu, Wei & Wang, Dongxiang & Yang, Xinjun, 2022. "Study on the effects of runner geometric parameters on the performance of micro Francis turbines used in water supply system of high-rise buildings," Energy, Elsevier, vol. 256(C).
    17. Barbarelli, S. & Amelio, M. & Florio, G., 2016. "Predictive model estimating the performances of centrifugal pumps used as turbines," Energy, Elsevier, vol. 107(C), pages 103-121.
    18. Tutar, Mustafa & Veci, Inaki, 2016. "Performance analysis of a horizontal axis 3-bladed Savonius type wave turbine in an experimental wave flume (EWF)," Renewable Energy, Elsevier, vol. 86(C), pages 8-25.
    19. Huan-Feng Duan & Xichao Gao, 2019. "Flooding Control and Hydro-Energy Assessment for Urban Stormwater Drainage Systems under Climate Change: Framework Development and Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3523-3545, August.
    20. Du, Jiyun & Yang, Hongxing & Shen, Zhicheng & Chen, Jian, 2017. "Micro hydro power generation from water supply system in high rise buildings using pump as turbines," Energy, Elsevier, vol. 137(C), pages 431-440.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124009443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.