IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v228y2024ics0960148124006797.html
   My bibliography  Save this article

Life cycle emissions and unit production cost of sustainable aviation fuel from logging residues in Georgia, United States

Author

Listed:
  • Akter, Hosne Ara
  • Masum, Farhad Hossain
  • Dwivedi, Puneet

Abstract

Production of Sustainable Aviation Fuel (SAF) has gained popularity for reducing carbon emissions from the aviation sector. To evaluate the environmental and economic tradeoffs related to SAF production and its potential use, this study estimates the life cycle carbon emissions and unit production cost of SAF produced from logging residues generated during harvest and thinning operations in Georgia, a major roundwood producing state in the Southern United States. We considered two production pathways, i.e., Ethanol-to-Jet (ETJ) and Iso-Butanol-to-Jet (Iso-BTJ), to compute the carbon savings and unit production costs. A sensitivity analysis was performed to identify significant factors contributing to the overall carbon savings and unit production costs for the selected pathways. After considering revenues generated from co-products, the minimum aviation fuel selling price (MASP) was $2.71 L-1 and $2.44 L-1 for ETJ and Iso-BTJ pathways, respectively. Capital investment cost at biorefinery accounted for most of the MASP, followed by the minimum haul rate for transporting biomass and variable cost for alcohol intermediate production. Finally, after considering tax credit from the Inflation Reduction Act of 2022 and RIN (Renewable Identification Number) credit along with co-product revenue, the MASP ranged between $2.29 L-1 and 0.83 L-1 for the ETJ pathway and between $2.04 L-1 and $0.59 L-1 for the Iso-BTJ pathway. In addition, the carbon intensity of both the ETJ and Iso-BTJ pathways were 758 g CO2e L−1 and 976 g CO2e L−1, with relative carbon savings of 70.6 % and 62.1 % compared to conventional aviation fuel. The production cost suggests a minimum abatement cost of $59 t CO2e−1 for the ETJ and -$59.3 t CO2e−1 for the Iso-BTJ pathways in the presence of federal incentives. Our study shows that logging residues-based SAF could reduce the overall carbon footprint of the aviation sector; however, policy support is needed to support its production in light of higher production costs.

Suggested Citation

  • Akter, Hosne Ara & Masum, Farhad Hossain & Dwivedi, Puneet, 2024. "Life cycle emissions and unit production cost of sustainable aviation fuel from logging residues in Georgia, United States," Renewable Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124006797
    DOI: 10.1016/j.renene.2024.120611
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124006797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yves Auad & Eduardo J. C. Dias & Marcel Tencé & Jean-Denis Blazit & Xiaoyan Li & Luiz Fernando Zagonel & Odile Stéphan & Luiz H. G. Tizei & F. Javier García de Abajo & Mathieu Kociak, 2023. "μeV electron spectromicroscopy using free-space light," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    2. Wen Yan & Ming Ma, 2023. "Electrochemical Conversion of Carbon Dioxide," Energies, MDPI, vol. 16(5), pages 1-3, February.
    3. Vela-García, Nicolas & Bolonio, David & Mosquera, Ana María & Ortega, Marcelo F. & García-Martínez, María-Jesús & Canoira, Laureano, 2020. "Techno-economic and life cycle assessment of triisobutane production and its suitability as biojet fuel," Applied Energy, Elsevier, vol. 268(C).
    4. Tzanetis, Konstantinos F. & Posada, John A. & Ramirez, Andrea, 2017. "Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: The impact of reaction conditions on production costs and GHG emissions performance," Renewable Energy, Elsevier, vol. 113(C), pages 1388-1398.
    5. ChungHyuk Lee & Wilton J. M. Kort-Kamp & Haoran Yu & David A. Cullen & Brian M. Patterson & Tanvir Alam Arman & Siddharth Komini Babu & Rangachary Mukundan & Rod L. Borup & Jacob S. Spendelow, 2023. "Grooved electrodes for high-power-density fuel cells," Nature Energy, Nature, vol. 8(7), pages 685-694, July.
    6. Peiliu Li & Xianfu Huang & Ya-Pu Zhao, 2023. "Electro-capillary peeling of thin films," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Qian Jia & Ying Wang & Zhenci Xu & Fengting Li, 2023. "Electricity outages delay SDGs in sub-Saharan Africa," Nature, Nature, vol. 618(7963), pages 30-30, June.
    8. Long Zhang & Yunyan Qiu & Wei-Guang Liu & Hongliang Chen & Dengke Shen & Bo Song & Kang Cai & Huang Wu & Yang Jiao & Yuanning Feng & James S. W. Seale & Cristian Pezzato & Jia Tian & Yu Tan & Xiao-Yan, 2023. "An electric molecular motor," Nature, Nature, vol. 613(7943), pages 280-286, January.
    9. Ringsred, Anna & van Dyk, Susan & Saddler, John (Jack), 2021. "Life-cycle analysis of drop-in biojet fuel produced from British Columbia forest residues and wood pellets via fast-pyrolysis," Applied Energy, Elsevier, vol. 287(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Casella, Virginia & La Fata, Alice & Suzzi, Stefano & Barbero, Giulia & Barilli, Riccardo, 2024. "The United Kingdom electricity market mechanism: A tool for a battery energy storage system optimal dispatching," Renewable Energy, Elsevier, vol. 231(C).
    2. Norman, E.A. & Maestre, V.M. & Ortiz, A. & Ortiz, I., 2024. "Steam electrolysis for green hydrogen generation. State of the art and research perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    3. Amirifard, Masoumeh & Sinton, Ronald A. & Kurtz, Sarah, 2024. "How demand-side management can shape electricity generation capacity planning," Utilities Policy, Elsevier, vol. 88(C).
    4. Abbasi, Bardia & Li, Simon & Mwesigye, Aggrey, 2024. "Energy, exergy, economic, and environmental (4E) analysis of SAHP water heaters in very cold climatic conditions," Renewable Energy, Elsevier, vol. 226(C).
    5. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    6. Xin Sun & Jin-Ku Bai & Yu-Dong Yang & Ke-Lin Zhu & Jia-Qi Liang & Xin-Yue Wang & Jun-Feng Xiang & Xiang Hao & Tong-Ling Liang & Ai-Jiao Guan & Ning-Ning Wu & Han-Yuan Gong, 2024. "Controlled interconversion of macrocyclic atropisomers via defined intermediates," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Zhao, Wenjuan & Lin, Bin & Wang, Hao & Wang, Faze & Asghar, Muhammad Imran & Wang, Jun & Zhu, Bin & Lund, Peter, 2024. "A half-metallic heterostructure fuel cell with high performance," Renewable Energy, Elsevier, vol. 232(C).
    8. Khalekuzzaman, Md & Jahan, Nusrat & Bin Kabir, Sadib & Hasan, Mehedi, 2024. "An integrated energy recovery approach of biohythane-biocrude production from microalgae-sludge through co-digestion and co-liquefaction," Renewable Energy, Elsevier, vol. 225(C).
    9. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Ramirez, Jerome A. & Brown, Richard & Rainey, Thomas J., 2018. "Techno-economic analysis of the thermal liquefaction of sugarcane bagasse in ethanol to produce liquid fuels," Applied Energy, Elsevier, vol. 224(C), pages 184-193.
    11. Ahmad, Fiaz & Silva, Edson Luiz & Varesche, Maria Bernadete Amâncio, 2018. "Hydrothermal processing of biomass for anaerobic digestion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 108-124.
    12. Perkins, Greg & Batalha, Nuno & Kumar, Adarsh & Bhaskar, Thallada & Konarova, Muxina, 2019. "Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Qian, Lili & Wang, Shuzhong & Savage, Phillip E., 2020. "Fast and isothermal hydrothermal liquefaction of sludge at different severities: Reaction products, pathways, and kinetics," Applied Energy, Elsevier, vol. 260(C).
    14. Sangjan, Amornrat & Ngamsiri, Pornthip & Klomkliang, Nikom & Wu, Kevin C.-W. & Matsagar, Babasaheb M. & Ratchahat, Sakhon & Liu, Chen-Guang & Laosiripojana, Navadol & Sakdaronnarong, Chularat, 2020. "Effect of microwave-assisted wet torrefaction on liquefaction of biomass from palm oil and sugarcane wastes to bio-oil and carbon nanodots/nanoflakes by hydrothermolysis and solvothermolysis," Renewable Energy, Elsevier, vol. 154(C), pages 1204-1217.
    15. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    16. Lozano, E.M. & Pedersen, T.H. & Rosendahl, L.A., 2019. "Modeling of thermochemically liquefied biomass products and heat of formation for process energy assessment," Applied Energy, Elsevier, vol. 254(C).
    17. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    18. Peng Zhang & Hsiao-Chien Chen & Houyu Zhu & Kuo Chen & Tuya Li & Yilin Zhao & Jiaye Li & Ruanbo Hu & Siying Huang & Wei Zhu & Yunqi Liu & Yuan Pan, 2024. "Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Zhang, Qiongyin & Xiao, Jun & Hao, Jingwen, 2023. "Cumulative exergy analysis of lignocellulosic biomass to bio-jet fuel through aqueous-phase conversion with different lignin conversion pathways," Energy, Elsevier, vol. 265(C).
    20. Fang, Jun & Liu, Zhuangzhuang & Luan, Hui & Liu, Fen & Yuan, Xingzhong & Long, Shundong & Wang, Andong & Ma, Yong & Xiao, Zhihua, 2021. "Thermochemical liquefaction of cattle manure using ethanol as solvent: Effects of temperature on bio-oil yields and chemical compositions," Renewable Energy, Elsevier, vol. 167(C), pages 32-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124006797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.