IDEAS home Printed from https://ideas.repec.org/a/fan/efeefe/vhtml10.3280-efe2017-003005.html
   My bibliography  Save this article

Investigating the energy efficiencies of OECD countries via a slack-based undesirable output model

Author

Listed:
  • Fazil Gokgoz
  • Serap Pelin Turkoglu

Abstract

Energy efficiency has a growing importance both for developed and developing countries within OECD. This study investigates the energy efficiency levels for OECD countries for the 2010-2014 period via a slack-based, undesirable output model, a popular data envelopment analysis (DEA) approach. Efficiency analyses have been carried out with two sub-groups of OECD countries. Within the framework of the DEA analyses, the primary energy consumption, total number of employees and gross capital formation as inputs and CO2 emission and gross domestic product (GDP) as outputs have been selected. In further, a binary logistic regression method has also been applied so as to analyse the factors affecting the energy efficiencies of OECD countries. The effect levels of these factors have been determined by logistic regression analysis. Empirical analyses have shown that minimizing an undesirable output while maximizing desirable outputs for the energy has a crucial role for OECD countries in reducing environmental pollution and increase the competition capacity. Besides, logistic regression results have shown significant results for decision and policy makers in the energy sector. The results of this study show that OECD countries can achieve a good level of energy efficiency if they improve their economic activities by improving their environmental performance.

Suggested Citation

  • Fazil Gokgoz & Serap Pelin Turkoglu, 2017. "Investigating the energy efficiencies of OECD countries via a slack-based undesirable output model," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(3), pages 73-94.
  • Handle: RePEc:fan:efeefe:v:html10.3280/efe2017-003005
    as

    Download full text from publisher

    File URL: http://www.francoangeli.it/riviste/Scheda_Rivista.aspx?IDArticolo=62153&Tipo=ArticoloPDF
    Download Restriction: Single articles can be downloaded buying download credits, for info: https://www.francoangeli.it/DownloadCredit
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), 2011. "Handbook on Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-1-4419-6151-8, January.
    2. Chu Wei & Jinlan Ni & Manhong Shen, 2009. "Empirical Analysis of Provincial Energy Efficiency in China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 17(5), pages 88-103, September.
    3. Woo, Chungwon & Chung, Yanghon & Chun, Dongphil & Seo, Hangyeol & Hong, Sungjun, 2015. "The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 367-376.
    4. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    5. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    6. Lu, Ching-Cheng & Chiu, Yung-Ho & Shyu, Ming-Kuang & Lee, Jen-Hui, 2013. "Measuring CO2 emission efficiency in OECD countries: Application of the Hybrid Efficiency model," Economic Modelling, Elsevier, vol. 32(C), pages 130-135.
    7. Diaz-Balteiro, Luis & Casimiro Herruzo, A. & Martinez, Margarita & Gonzalez-Pachon, Jacinto, 2006. "An analysis of productive efficiency and innovation activity using DEA: An application to Spain's wood-based industry," Forest Policy and Economics, Elsevier, vol. 8(7), pages 762-773, October.
    8. World Bank, 2005. "World Development Indicators 2005," World Bank Publications - Books, The World Bank Group, number 12426.
    9. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    10. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    11. Apergis, Nicholas & Aye, Goodness C. & Barros, Carlos Pestana & Gupta, Rangan & Wanke, Peter, 2015. "Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs," Energy Economics, Elsevier, vol. 51(C), pages 45-53.
    12. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    13. Fazıl Gökgöz & Ercem Erkul, 2014. "Energy Efficiency Analysis For The European Countries," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 8(1), pages 124-140.
    14. Xie, Bai-Chen & Shang, Li-Feng & Yang, Si-Bo & Yi, Bo-Wen, 2014. "Dynamic environmental efficiency evaluation of electric power industries: Evidence from OECD (Organization for Economic Cooperation and Development) and BRIC (Brazil, Russia, India and China) countrie," Energy, Elsevier, vol. 74(C), pages 147-157.
    15. World Bank, 2005. "World Development Indicators 2005," World Bank Publications - Books, The World Bank Group, number 12425.
    16. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    17. Arazmuradov, Annageldy, 2011. "Energy consumption and carbon dioxide environmental efficiency for former Soviet Union economies. evidence from DEA window analysis," MPRA Paper 36903, University Library of Munich, Germany, revised 24 Feb 2012.
    18. Chien, Taichen & Hu, Jin-Li, 2007. "Renewable energy and macroeconomic efficiency of OECD and non-OECD economies," Energy Policy, Elsevier, vol. 35(7), pages 3606-3615, July.
    19. Rashidi, Kamran & Farzipoor Saen, Reza, 2015. "Measuring eco-efficiency based on green indicators and potentials in energy saving and undesirable output abatement," Energy Economics, Elsevier, vol. 50(C), pages 18-26.
    20. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    3. Demiral, Elif E. & Sağlam, Ümit, 2021. "Eco-efficiency and Eco-productivity assessments of the states in the United States: A two-stage Non-parametric analysis," Applied Energy, Elsevier, vol. 303(C).
    4. Khalid Mehmood & Yaser Iftikhar & Shouming Chen & Shaheera Amin & Alia Manzoor & Jinlong Pan, 2020. "Analysis of Inter-Temporal Change in the Energy and CO 2 Emissions Efficiency of Economies: A Two Divisional Network DEA Approach," Energies, MDPI, vol. 13(13), pages 1-17, June.
    5. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
    6. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    7. Chia-Nan Wang & Hector Tibo & Duy Hung Duong, 2020. "Renewable Energy Utilization Analysis of Highly and Newly Industrialized Countries Using an Undesirable Output Model," Energies, MDPI, vol. 13(10), pages 1-21, May.
    8. Georgia Makridou, Kostas Andriosopoulos, Michael Doumpos, and Constantin Zopounidis, 2015. "A Two-stage approach for energy efficiency analysis in European Union countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    9. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    10. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    11. Amirteimoori, Alireza & Cezar, Asunur & Zadmirzaei, Majid & Susaeta, Andres, 2024. "Environmental performance evaluation in the forest sector: An extended stochastic data envelopment analysis approach," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    12. Fang-Rong Ren & Ze Tian & Yu-Ting Shen & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Energy, CO 2 , and AQI Efficiency and Improvement of the Yangtze River Economic Belt," Energies, MDPI, vol. 12(4), pages 1-17, February.
    13. Jebali, Eya & Essid, Hédi & Khraief, Naceur, 2017. "The analysis of energy efficiency of the Mediterranean countries: A two-stage double bootstrap DEA approach," Energy, Elsevier, vol. 134(C), pages 991-1000.
    14. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    15. Wang, Ke & Lu, Bin & Wei, Yi-Ming, 2013. "China’s regional energy and environmental efficiency: A Range-Adjusted Measure based analysis," Applied Energy, Elsevier, vol. 112(C), pages 1403-1415.
    16. Yang Li & An-Chi Liu & Shu-Mei Wang & Yiting Zhan & Jingran Chen & Hsiao-Fen Hsiao, 2022. "A Study of Total-Factor Energy Efficiency for Regional Sustainable Development in China: An Application of Bootstrapped DEA and Clustering Approach," Energies, MDPI, vol. 15(9), pages 1-13, April.
    17. Sedef E. Kara & Mustapha D. Ibrahim & Sahand Daneshvar, 2021. "Dual Efficiency and Productivity Analysis of Renewable Energy Alternatives of OECD Countries," Sustainability, MDPI, vol. 13(13), pages 1-14, July.
    18. Makridou, Georgia & Andriosopoulos, Kostas & Doumpos, Michael & Zopounidis, Constantin, 2016. "Measuring the efficiency of energy-intensive industries across European countries," Energy Policy, Elsevier, vol. 88(C), pages 573-583.
    19. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    20. Bampatsou, Christina & Halkos, George, 2018. "Dynamics of productivity taking into consideration the impact of energy consumption and environmental degradation," Energy Policy, Elsevier, vol. 120(C), pages 276-283.

    More about this item

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fan:efeefe:v:html10.3280/efe2017-003005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefania Rosato (email available below). General contact details of provider: http://www.francoangeli.it/riviste/sommario.aspx?IDRivista=10 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.