IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003318.html
   My bibliography  Save this article

Influence of shunt currents in industrial-scale alkaline water electrolyzer plants

Author

Listed:
  • Sakas, Georgios
  • Ibáñez-Rioja, Alejandro
  • Pöyhönen, Santeri
  • Kosonen, Antti
  • Ruuskanen, Vesa
  • Kauranen, Pertti
  • Ahola, Jero

Abstract

The aim of this paper is to analyze through simulation how the energy efficiency of a single electrolysis stack at various loads is affected by shunt currents and to determine the energy-optimal load distribution between lines in a multiline electrolysis system under various magnitudes of shunt current losses. A dynamic energy and mass balance model of an industrial 3MW, 16bar alkaline water electrolyzer (AWE) process was developed using MATLAB. The optimization goal is to determine the power supply for each AWE line so that it can meet any hydrogen demand while minimizing the global specific energy consumption (SEC). The Particle Swarm Optimization (PSO) algorithm is used to minimize the objective function. According to the results of the single stack investigation, shunt current reduction could significantly improve the energy efficiency of partial-load operation. In addition, the optimization study revealed that whenever two or more lines are required to run in order to satisfy the hydrogen demand, the global SEC is minimized when the lines operate at equal loads.

Suggested Citation

  • Sakas, Georgios & Ibáñez-Rioja, Alejandro & Pöyhönen, Santeri & Kosonen, Antti & Ruuskanen, Vesa & Kauranen, Pertti & Ahola, Jero, 2024. "Influence of shunt currents in industrial-scale alkaline water electrolyzer plants," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003318
    DOI: 10.1016/j.renene.2024.120266
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sakas, Georgios & Ibáñez-Rioja, Alejandro & Pöyhönen, Santeri & Järvinen, Lauri & Kosonen, Antti & Ruuskanen, Vesa & Kauranen, Pertti & Ahola, Jero, 2024. "Sensitivity analysis of the process conditions affecting the shunt currents and the SEC in an industrial-scale alkaline water electrolyzer plant," Applied Energy, Elsevier, vol. 359(C).
    2. Gallo, María Angélica & García Clúa, José Gabriel, 2023. "Sizing and analytical optimization of an alkaline water electrolyzer powered by a grid-assisted wind turbine to minimize grid power exchange," Renewable Energy, Elsevier, vol. 216(C).
    3. Mohammad Ostadi & Kristofer Gunnar Paso & Sandra Rodriguez-Fabia & Lars Erik Øi & Flavio Manenti & Magne Hillestad, 2020. "Process Integration of Green Hydrogen: Decarbonization of Chemical Industries," Energies, MDPI, vol. 13(18), pages 1-16, September.
    4. Hu, Song & Guo, Bin & Ding, Shunliang & Yang, Fuyuan & Dang, Jian & Liu, Biao & Gu, Junjie & Ma, Jugang & Ouyang, Minggao, 2022. "A comprehensive review of alkaline water electrolysis mathematical modeling," Applied Energy, Elsevier, vol. 327(C).
    5. Ibáñez-Rioja, Alejandro & Järvinen, Lauri & Puranen, Pietari & Kosonen, Antti & Ruuskanen, Vesa & Hynynen, Katja & Ahola, Jero & Kauranen, Pertti, 2023. "Off-grid solar PV–wind power–battery–water electrolyzer plant: Simultaneous optimization of component capacities and system control," Applied Energy, Elsevier, vol. 345(C).
    6. De Silva, Y. Sanath K. & Middleton, Peter Hugh & Kolhe, Mohan Lal, 2020. "Performance comparison of mono-polar and bi-polar configurations of alkaline electrolysis stack through 3-D modelling and experimental fabrication," Renewable Energy, Elsevier, vol. 149(C), pages 760-772.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    2. Qunxiang Gao & Ping Zhang & Wei Peng & Songzhe Chen & Gang Zhao, 2021. "Structural Design Simulation of Bayonet Heat Exchanger for Sulfuric Acid Decomposition," Energies, MDPI, vol. 14(2), pages 1-18, January.
    3. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Mansouri, Seyed Amir & Escámez, Antonio & Alharthi, Yahya Z. & Jurado, Francisco, 2024. "Risk-averse electrolyser sizing in industrial parks: An efficient stochastic-robust approach," Applied Energy, Elsevier, vol. 367(C).
    4. Norman Hendrik Riedel & Miroslav Špaček, 2022. "Challenges of Renewable Energy Sourcing in the Process Industries: The Example of the German Chemical Industry," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    5. Nova, Anna & Prifti, Kristiano & Negri, Francesco & Manenti, Flavio, 2023. "Multiscale techno-economic analysis of orange hydrogen synthesis," Energy, Elsevier, vol. 282(C).
    6. Fan Yang & Xiaoming Xu & Yuehua Li & Dongfang Chen & Song Hu & Ziwen He & Yi Du, 2023. "A Review on Mass Transfer in Multiscale Porous Media in Proton Exchange Membrane Fuel Cells: Mechanism, Modeling, and Parameter Identification," Energies, MDPI, vol. 16(8), pages 1-24, April.
    7. Ibáñez-Rioja, Alejandro & Järvinen, Lauri & Puranen, Pietari & Kosonen, Antti & Ruuskanen, Vesa & Hynynen, Katja & Ahola, Jero & Kauranen, Pertti, 2023. "Off-grid solar PV–wind power–battery–water electrolyzer plant: Simultaneous optimization of component capacities and system control," Applied Energy, Elsevier, vol. 345(C).
    8. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.
    9. Fernando Rocha & Christos Georgiadis & Kevin Droogenbroek & Renaud Delmelle & Xavier Pinon & Grzegorz Pyka & Greet Kerckhofs & Franz Egert & Fatemeh Razmjooei & Syed-Asif Ansar & Shigenori Mitsushima , 2024. "Proton exchange membrane-like alkaline water electrolysis using flow-engineered three-dimensional electrodes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Merabet, Nour Hane & Kerboua, Kaouther & Hoinkis, Jan, 2024. "Hydrogen production from wastewater: A comprehensive review of conventional and solar powered technologies," Renewable Energy, Elsevier, vol. 226(C).
    11. Sakas, Georgios & Ibáñez-Rioja, Alejandro & Pöyhönen, Santeri & Järvinen, Lauri & Kosonen, Antti & Ruuskanen, Vesa & Kauranen, Pertti & Ahola, Jero, 2024. "Sensitivity analysis of the process conditions affecting the shunt currents and the SEC in an industrial-scale alkaline water electrolyzer plant," Applied Energy, Elsevier, vol. 359(C).
    12. Olivier Bethoux, 2020. "Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option towards an Environmentally Friendly Energy Transition," Energies, MDPI, vol. 13(22), pages 1-27, November.
    13. Genovese, Matteo & Fragiacomo, Petronilla, 2021. "Parametric technical-economic investigation of a pressurized hydrogen electrolyzer unit coupled with a storage compression system," Renewable Energy, Elsevier, vol. 180(C), pages 502-515.
    14. Daniarta, S. & Sowa, D. & Błasiak, P. & Imre, A.R. & Kolasiński, P., 2024. "Techno-economic survey of enhancing Power-to-Methane efficiency via waste heat recovery from electrolysis and biomethanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    15. Arturo de Risi & Gianpiero Colangelo & Marco Milanese, 2023. "Advanced Technologies for Green Hydrogen Production," Energies, MDPI, vol. 16(6), pages 1-4, March.
    16. Jianhua Lei & Hui Ma & Geng Qin & Zhihua Guo & Peizhou Xia & Chuantong Hao, 2024. "A Comprehensive Review on the Power Supply System of Hydrogen Production Electrolyzers for Future Integrated Energy Systems," Energies, MDPI, vol. 17(4), pages 1-37, February.
    17. Mikhail Dvoynikov & George Buslaev & Andrey Kunshin & Dmitry Sidorov & Andrzej Kraslawski & Margarita Budovskaya, 2021. "New Concepts of Hydrogen Production and Storage in Arctic Region," Resources, MDPI, vol. 10(1), pages 1-18, January.
    18. Yuriy Zagashvili & Aleksey Kuzmin & George Buslaev & Valentin Morenov, 2021. "Small-Scaled Production of Blue Hydrogen with Reduced Carbon Footprint," Energies, MDPI, vol. 14(16), pages 1-11, August.
    19. Qureshi, Fazil & Yusuf, Mohammad & Kamyab, Hesam & Vo, Dai-Viet N. & Chelliapan, Shreeshivadasan & Joo, Sang-Woo & Vasseghian, Yasser, 2022. "Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Yang, Fan & Li, Yuehua & Chen, Dongfang & Hu, Song & Xu, Xiaoming, 2024. "Parameter identification of PEMFC steady-state model based on p-dimensional extremum seeking via simplex tuning optimization method," Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.