IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v345y2023ics0306261923006414.html
   My bibliography  Save this article

Off-grid solar PV–wind power–battery–water electrolyzer plant: Simultaneous optimization of component capacities and system control

Author

Listed:
  • Ibáñez-Rioja, Alejandro
  • Järvinen, Lauri
  • Puranen, Pietari
  • Kosonen, Antti
  • Ruuskanen, Vesa
  • Hynynen, Katja
  • Ahola, Jero
  • Kauranen, Pertti

Abstract

Green hydrogen production systems will play an important role in the energy transition from fossil-based fuels to zero-carbon technologies. This paper investigates a concept of an off-grid alkaline water electrolyzer plant integrated with solar photovoltaic (PV), wind power, and a battery energy storage system (BESS). The operation of the plant is simulated over 30years with 5min time resolution based on measured power generation data collected from a solar photovoltaic installation and a wind farm located in southeastern Finland. Levelized cost of hydrogen (LCOH) is calculated based on the capital expenditures (CAPEX), the operating expenses (OPEX), and the respective learning curves for each of the components. Component degradation and replacements during the operational lifetime are included in the model, and the capacity of the components and the system control are simultaneously optimized to obtain the minimum LCOH. A sensitivity analysis performed over different installation years and discount rates reveals that for the off-grid alkaline system, the implementation of a wind farm as the sole power supply is the most economical solution until the installation years 2035–2040. Solar PV and a BESS are found to increase the full-load hours of the electrolyzer and reduce the electricity curtailed in the off-grid plant to less than 8%. However, with the current component prices and the climate in the studied region, they are not economically beneficial. It is found that the cost of hydrogen can be reduced to 2 €/kg by the year 2030.

Suggested Citation

  • Ibáñez-Rioja, Alejandro & Järvinen, Lauri & Puranen, Pietari & Kosonen, Antti & Ruuskanen, Vesa & Hynynen, Katja & Ahola, Jero & Kauranen, Pertti, 2023. "Off-grid solar PV–wind power–battery–water electrolyzer plant: Simultaneous optimization of component capacities and system control," Applied Energy, Elsevier, vol. 345(C).
  • Handle: RePEc:eee:appene:v:345:y:2023:i:c:s0306261923006414
    DOI: 10.1016/j.apenergy.2023.121277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923006414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steffen, Bjarne, 2020. "Estimating the cost of capital for renewable energy projects," Energy Economics, Elsevier, vol. 88(C).
    2. Piotr W. Saługa & Krzysztof Zamasz & Zdzisława Dacko-Pikiewicz & Katarzyna Szczepańska-Woszczyna & Marcin Malec, 2021. "Risk-Adjusted Discount Rate and Its Components for Onshore Wind Farms at the Feasibility Stage," Energies, MDPI, vol. 14(20), pages 1-12, October.
    3. Tang, Ou & Rehme, Jakob & Cerin, Pontus, 2022. "Levelized cost of hydrogen for refueling stations with solar PV and wind in Sweden: On-grid or off-grid?," Energy, Elsevier, vol. 241(C).
    4. Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
    5. Hu, Song & Guo, Bin & Ding, Shunliang & Yang, Fuyuan & Dang, Jian & Liu, Biao & Gu, Junjie & Ma, Jugang & Ouyang, Minggao, 2022. "A comprehensive review of alkaline water electrolysis mathematical modeling," Applied Energy, Elsevier, vol. 327(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sakas, Georgios & Ibáñez-Rioja, Alejandro & Pöyhönen, Santeri & Kosonen, Antti & Ruuskanen, Vesa & Kauranen, Pertti & Ahola, Jero, 2024. "Influence of shunt currents in industrial-scale alkaline water electrolyzer plants," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radoslaw Miskiewicz, 2022. "Clean and Affordable Energy within Sustainable Development Goals: The Role of Governance Digitalization," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    3. Zhuk, A. & Zeigarnik, Yu. & Buzoverov, E. & Sheindlin, A., 2016. "Managing peak loads in energy grids: Comparative economic analysis," Energy Policy, Elsevier, vol. 88(C), pages 39-44.
    4. Gumber, Anurag & Zana, Riccardo & Steffen, Bjarne, 2024. "A global analysis of renewable energy project commissioning timelines," Applied Energy, Elsevier, vol. 358(C).
    5. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    6. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    7. Sharma, Rajesh & Shahbaz, Muhammad & Sinha, Avik & Vo, Xuan Vinh, 2021. "Examining the temporal impact of stock market development on carbon intensity: Evidence from South Asian countries," MPRA Paper 108925, University Library of Munich, Germany, revised 2021.
    8. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    9. Luiz Moreira Coelho Junior & Amadeu Junior da Silva Fonseca & Roberto Castro & João Carlos de Oliveira Mello & Victor Hugo Ribeiro dos Santos & Renato Barros Pinheiro & Wilton Lima Sousa & Edvaldo Per, 2022. "Empirical Evidence of the Cost of Capital under Risk Conditions for Thermoelectric Power Plants in Brazil," Energies, MDPI, vol. 15(12), pages 1-12, June.
    10. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Inclusive Economic Growth: Relationship between Energy and Governance Efficiency," Energies, MDPI, vol. 16(6), pages 1-16, March.
    11. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    12. Hashemi, Majid & Jenkins, Glenn & Milne, Frank, 2023. "Rooftop solar with net metering: An integrated investment appraisal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Buschle, Julius & Anatolitis, Vasilios & Plötz, Patrick, 2024. "Empirical evidence on discrimination in multi-technology renewable energy auctions in Europe," Energy Policy, Elsevier, vol. 184(C).
    14. Waidelich, Paul & Steffen, Bjarne, 2024. "Renewable energy financing by state investment banks: Evidence from OECD countries," Energy Economics, Elsevier, vol. 132(C).
    15. Grzegorz Kinelski & Jakub Stęchły & Piotr Bartkowiak, 2022. "Various Facets of Sustainable Smart City Management: Selected Examples from Polish Metropolitan Areas," Energies, MDPI, vol. 15(9), pages 1-23, April.
    16. Melliger, Marc, 2023. "Quantifying technology skewness in European multi-technology auctions and the effect of design elements and other driving factors," Energy Policy, Elsevier, vol. 175(C).
    17. Moon, Yongma & Baran, Mesut, 2018. "Economic analysis of a residential PV system from the timing perspective: A real option model," Renewable Energy, Elsevier, vol. 125(C), pages 783-795.
    18. Yang, Jingze & Chi, Hetian & Cheng, Mohan & Dong, Mingqi & Li, Siwu & Yao, Hong, 2023. "Performance analysis of hydrogen supply using curtailed power from a solar-wind-storage power system," Renewable Energy, Elsevier, vol. 212(C), pages 1005-1019.
    19. Neill Bartie & Lucero Cobos‐Becerra & Florian Mathies & Janardan Dagar & Eva Unger & Magnus Fröhling & Markus A. Reuter & Rutger Schlatmann, 2023. "Cost versus environment? Combined life cycle, techno‐economic, and circularity assessment of silicon‐ and perovskite‐based photovoltaic systems," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 993-1007, June.
    20. Piotr W. Saługa & Krzysztof Zamasz & Zdzisława Dacko-Pikiewicz & Katarzyna Szczepańska-Woszczyna & Marcin Malec, 2021. "Risk-Adjusted Discount Rate and Its Components for Onshore Wind Farms at the Feasibility Stage," Energies, MDPI, vol. 14(20), pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:345:y:2023:i:c:s0306261923006414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.