IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124001836.html
   My bibliography  Save this article

Co-gasification characteristics of Ca-rich sludge and Fe-rich sludge under CO2 atmosphere, and potential utilization of gasification residues as renewable catalyst in biomass pyrolysis

Author

Listed:
  • Dai, Ying
  • Liu, Guojun
  • Liang, Hongxin
  • Fang, Hua
  • Chen, Jianbiao
  • Wang, Fenfen
  • Zhu, Jinjiao
  • Zhu, Yuezhao
  • Tan, Jinzhu

Abstract

The co-gasification behaviors and performances of Ca-rich sludge (CS) and Fe-rich sludge (FS) were studied by thermogravimetric analyzer. The results showed that the comprehensive gasification index was highest at 40% CS ratio, which was 9.7 × 10−8 %2/(min2·°C3). The co-gasification resulted in more solid products generation due to that ash hindered contacts of gasifying agent and organics. By the sliding resistance furnace (SRF), in 80%CO2/20%N2, the evolution of gas compositions during the gasification process and impacts of different temperatures and blending ratios on co-gasification were evaluated. The evolution of gas compositions showed that the gas yields from CS gasification were higher than those from FS, and the interactions and ash catalytic effect during the co-gasification made the peak times earlier. The reaction temperatures and blending ratios had certain effects on the co-gasification process, affecting the mineral compositions and pores structures of sludge residues. Finally, considering the attributes of rich pores structure and Ca/Fe elements, the gasification residues can be used as ex-situ catalyst in the modification of biomass pyrolytic volatiles. Conducting the pyrolysis experiments by the SRF under N2 atmosphere, with adding gasification residues of sludge, the CO yield from biomass pyrolysis grew, but the yields of CO2, H2 and C2Hm reduced.

Suggested Citation

  • Dai, Ying & Liu, Guojun & Liang, Hongxin & Fang, Hua & Chen, Jianbiao & Wang, Fenfen & Zhu, Jinjiao & Zhu, Yuezhao & Tan, Jinzhu, 2024. "Co-gasification characteristics of Ca-rich sludge and Fe-rich sludge under CO2 atmosphere, and potential utilization of gasification residues as renewable catalyst in biomass pyrolysis," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001836
    DOI: 10.1016/j.renene.2024.120118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124001836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kan, Xiang & Chen, Xiaoping & Shen, Ye & Lapkin, Alexei A. & Kraft, Markus & Wang, Chi-Hwa, 2019. "Box-Behnken design based CO2 co-gasification of horticultural waste and sewage sludge with addition of ash from waste as catalyst," Applied Energy, Elsevier, vol. 242(C), pages 1549-1561.
    2. Sun, Zhao & Chen, Shiyi & Russell, Christopher K. & Hu, Jun & Rony, Asif H. & Tan, Gang & Chen, Aimin & Duan, Lunbo & Boman, John & Tang, Jinke & Chien, TeYu & Fan, Maohong & Xiang, Wenguo, 2018. "Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: Investigation of inner-looping redox reaction and promoting mechanisms," Applied Energy, Elsevier, vol. 212(C), pages 931-943.
    3. Jeong, Yong-Seong & Choi, Young-Kon & Park, Ki-Bum & Kim, Joo-Sik, 2019. "Air co-gasification of coal and dried sewage sludge in a two-stage gasifier: Effect of blending ratio on the producer gas composition and tar removal," Energy, Elsevier, vol. 185(C), pages 708-716.
    4. Xing, Xinxin & Zhao, Hongyu & Zhou, Lili & Wang, Yangang & Chen, Haijun & Gao, Ying & Wang, Yinfeng & Zhu, Yuezhao, 2022. "Pyrolysis kinetics, thermodynamics of PTA sludge and product characterization of cyclic in-situ catalytic pyrolysis by using recycled char as a catalyst," Energy, Elsevier, vol. 251(C).
    5. Liu, Guicai & Liao, Yanfen & Wu, Yuting & Ma, Xiaoqian, 2018. "Synthesis gas production from microalgae gasification in the presence of Fe2O3 oxygen carrier and CaO additive," Applied Energy, Elsevier, vol. 212(C), pages 955-965.
    6. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yahui & Li, Xiaofu & Meng, Li & Zhang, Wenqi & Wang, Yinfeng & Wang, Lei & Bi, Xiaotao & Zhu, Yuezhao, 2024. "Experimental investigation on high-temperature co-gasification and melting behavior of petrochemical sludge and bituminous coal in CO2 atmosphere," Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Genyang & Gu, Jing & Huang, Zhen & Yuan, Haoran & Chen, Yong, 2022. "Cellulose gasification with Ca–Fe oxygen carrier in chemical-looping process," Energy, Elsevier, vol. 239(PD).
    2. Jeong, Yong-Seong & Mun, Tae-Young & Kim, Joo-Sik, 2022. "Two-stage gasification of dried sewage sludge: Effects of gasifying agent, bed material, gas cleaning system, and Ni-coated distributor on product gas quality," Renewable Energy, Elsevier, vol. 185(C), pages 208-216.
    3. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    5. He, Yahui & Li, Xiaofu & Meng, Li & Zhang, Wenqi & Wang, Yinfeng & Wang, Lei & Bi, Xiaotao & Zhu, Yuezhao, 2024. "Experimental investigation on high-temperature co-gasification and melting behavior of petrochemical sludge and bituminous coal in CO2 atmosphere," Energy, Elsevier, vol. 303(C).
    6. Song, Weiming & Zhou, Jianan & Li, Yujie & Yang, Jian & Cheng, Rijin, 2021. "New technology for producing high-quality combustible gas by high-temperature reaction of dust-removal coke powder in mixed atmosphere," Energy, Elsevier, vol. 233(C).
    7. Simona Di Fraia & M. Rakib Uddin, 2022. "Energy Recovery from Waste Paper and Deinking Sludge to Support the Demand of the Paper Industry: A Numerical Analysis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    8. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    9. Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.
    10. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    11. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    12. TsingHai Wang & Cheng-Di Dong & Jui-Yen Lin & Chiu-Wen Chen & Jo-Shu Chang & Hyunook Kim & Chin-Pao Huang & Chang-Mao Hung, 2021. "Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    13. Ma, Mingyan & Xu, Donghai & Gong, Xuehan & Diao, Yunfei & Feng, Peng & Kapusta, Krzysztof, 2023. "Municipal sewage sludge product recirculation catalytic pyrolysis mechanism from a kinetic perspective," Renewable Energy, Elsevier, vol. 215(C).
    14. Wu, Junnan & Liao, Yanfen & Lin, Yan & Tian, Yunlong & Ma, Xiaoqian, 2019. "Study on thermal decomposition kinetics model of sewage sludge and wheat based on multi distributed activation energy," Energy, Elsevier, vol. 185(C), pages 795-803.
    15. Sanaye, Sepehr & Alizadeh, Pouria & Yazdani, Mohsen, 2022. "Thermo-economic analysis of syngas production from wet digested sewage sludge by gasification process," Renewable Energy, Elsevier, vol. 190(C), pages 524-539.
    16. Ren, Yi & Wang, Zhiyong & Chen, Jianbiao & Gao, Haojie & Guo, Kai & Wang, Xu & Wang, Xiaoyuan & Wang, Yinfeng & Chen, Haijun & Zhu, Jinjiao & Zhu, Yuezhao, 2023. "Effect of water/acetic acid washing pretreatment on biomass chemical looping gasification (BCLG) using cost-effective oxygen carrier from iron-rich sludge ash," Energy, Elsevier, vol. 272(C).
    17. Yang, Xiaoxia & Gu, Shengshen & Kheradmand, Amanj & Kan, Tao & He, Jing & Strezov, Vladimir & Zou, Ruiping & Yu, Aibing & Jiang, Yijiao, 2022. "Tunable syngas production from biomass: Synergistic effect of steam, Ni–CaO catalyst, and biochar," Energy, Elsevier, vol. 254(PB).
    18. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    19. Li, Fenghai & Zhao, Chaoyue & Fan, Hongli & Xu, Meiling & Guo, Qianqian & Li, Yang & Wu, Lishun & Wang, Tao & Fang, Yitian, 2022. "Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition," Energy, Elsevier, vol. 251(C).
    20. Dai, Ying & Sun, Meng & Fang, Hua & Yao, Huicong & Chen, Jianbiao & Tan, Jinzhu & Mu, Lin & Zhu, Yuezhao, 2024. "Co-combustion of binary and ternary blends of industrial sludge, lignite and pine sawdust via thermogravimetric analysis: Thermal behaviors, interaction effects, kinetics evaluation, and artificial ne," Renewable Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.