IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123014660.html
   My bibliography  Save this article

Numerical model study on influences of photovoltaic plants on local microclimate

Author

Listed:
  • Li, Biao
  • Lei, Chen
  • Zhang, Wenpu
  • Olawoore, Victor Samuel
  • Shuai, Yong

Abstract

The construction of large-scale photovoltaic plants will inevitably change the local environment. We consider that the influences of such increasing large-scale photovoltaic installations on radiation, temperature, wind profile and other factors within the region can be described in a layer of photovoltaic canopy. This paper improves the UCRC-Solar model for photovoltaic plants, with reference to the calculation of sensible heat flux of the underlying forest surface. Model verification was done with measured data from the Red Rock photovoltaic plant, Arizona, USA. In this study, it indicates that photovoltaic plant has locally generated heat island effects in daytime. The calculation of local microclimate changes before and after the construction of the photovoltaic plants and, the impact of photovoltaic coverage finds an increase in the temperature daily range and a reduction in the ground temperature by about 5 °C. Furthermore, a 15 % increase in photovoltaic coverage increased the daily 3 m air temperature difference by 0.55 °C and reduced the ground temperature by 3.6 °C in the day and 1.1 °C at night, respectively. In the future, rain and snow processes would be considered to further explore the microclimate impact of photovoltaic plants.

Suggested Citation

  • Li, Biao & Lei, Chen & Zhang, Wenpu & Olawoore, Victor Samuel & Shuai, Yong, 2024. "Numerical model study on influences of photovoltaic plants on local microclimate," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123014660
    DOI: 10.1016/j.renene.2023.119551
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Chang, Rui & Luo, Yong & Zhu, Rong, 2020. "Simulated local climatic impacts of large-scale photovoltaics over the barren area of Qinghai, China," Renewable Energy, Elsevier, vol. 145(C), pages 478-489.
    3. Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
    4. Aronescu, A. & Appelbaum, J., 2017. "Design optimization of photovoltaic solar fields-insight and methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 882-893.
    5. Li, Zhenchao & Zhao, Yanyan & Luo, Yong & Yang, Liwei & Li, Peidu & Jin, Xiao & Jiang, Junxia & Liu, Rong & Gao, Xiaoqing, 2022. "A comparative study on the surface radiation characteristics of photovoltaic power plant in the Gobi desert," Renewable Energy, Elsevier, vol. 182(C), pages 764-771.
    6. El Mghouchi, Y. & El Bouardi, A. & Choulli, Z. & Ajzoul, T., 2016. "Models for obtaining the daily direct, diffuse and global solar radiations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 87-99.
    7. Hu, Weiwei & Li, Xingcai & Wang, Juan & Tian, Zihang & Zhou, Bin & Wu, Jinpeng & Li, Runmin & Li, Wencang & Ma, Ning & Kang, Jixuan & Wang, Yong & Tian, Jialong & Dai, Jibin, 2022. "Experimental research on the convective heat transfer coefficient of photovoltaic panel," Renewable Energy, Elsevier, vol. 185(C), pages 820-826.
    8. Rahaman, Md Atiqur & Chambers, Terrence L. & Fekih, Afef & Wiecheteck, Giovana & Carranza, Gabriel & Possetti, Gustavo Rafael Collere, 2023. "Floating photovoltaic module temperature estimation: Modeling and comparison," Renewable Energy, Elsevier, vol. 208(C), pages 162-180.
    9. Li, Peidu & Gao, Xiaoqing & Li, Zhenchao & Ye, Tiange & Zhou, Xiyin, 2022. "Effects of fishery complementary photovoltaic power plant on near-surface meteorology and energy balance," Renewable Energy, Elsevier, vol. 187(C), pages 698-709.
    10. Cavadini, Giovan Battista & Cook, Lauren M., 2021. "Green and cool roof choices integrated into rooftop solar energy modelling," Applied Energy, Elsevier, vol. 296(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Chenchen & Guo, Zhiling & Liu, Zhengguang & Hongyun, Zhang & Liu, Ran & Zhang, Haoran, 2024. "Application of photovoltaics on different types of land in China: Opportunities, status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Zhang, Nian & Zhang, Zifu & Cong, Zhentao & Lei, Huimin & Luo, Yong, 2023. "The impact of photovoltaic power plants on surface energy budget based on an ecohydrological model," Renewable Energy, Elsevier, vol. 212(C), pages 589-600.
    3. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    4. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    5. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    6. Reinhard Madlener & Weiyu Gao & Ilja Neustadt & Peter Zweifel, 2008. "Promoting renewable electricity generation in imperfect markets: price vs. quantity policies," SOI - Working Papers 0809, Socioeconomic Institute - University of Zurich.
    7. Daniel Matulić & Željko Andabaka & Sanja Radman & Goran Fruk & Josip Leto & Jakša Rošin & Mirta Rastija & Ivana Varga & Tea Tomljanović & Hrvoje Čeprnja & Marko Karoglan, 2023. "Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia," Agriculture, MDPI, vol. 13(7), pages 1-26, July.
    8. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.
    9. Woersdorfer, Julia Sophie & Kaus, Wolfhard, 2011. "Will nonowners follow pioneer consumers in the adoption of solar thermal systems? Empirical evidence for northwestern Germany," Ecological Economics, Elsevier, vol. 70(12), pages 2282-2291.
    10. Benkaciali, Saïd & Haddadi, Mourad & Khellaf, Abdellah, 2018. "Evaluation of direct solar irradiance from 18 broadband parametric models: Case of Algeria," Renewable Energy, Elsevier, vol. 125(C), pages 694-711.
    11. Sánchez-Braza, Antonio & Pablo-Romero, María del P., 2014. "Evaluation of property tax bonus to promote solar thermal systems in Andalusia (Spain)," Energy Policy, Elsevier, vol. 67(C), pages 832-843.
    12. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    13. Haneen Abuzaid & Fatin Samara, 2022. "Environmental and Economic Impact Assessments of a Photovoltaic Rooftop System in the United Arab Emirates," Energies, MDPI, vol. 15(22), pages 1-27, November.
    14. Ortega, Eneko & Suarez, Sergio & Jimeno, Juan Carlos & Gutierrez, Jose Rubén & Fano, Vanesa & Otaegi, Aloña & Rivas, Jose Manuel & Navas, Gustavo & Fernandez, Ignacio & Rodriguez-Conde, Sofia, 2024. "An statistical model for the short-term albedo estimation applied to PV bifacial modules," Renewable Energy, Elsevier, vol. 221(C).
    15. Baibhaw Kumar & Gábor Szepesi & Zsolt Čonka & Michal Kolcun & Zsolt Péter & László Berényi & Zoltán Szamosi, 2021. "Trendline Assessment of Solar Energy Potential in Hungary and Current Scenario of Renewable Energy in the Visegrád Countries for Future Sustainability," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    16. Bey, M. & Hamidat, A. & Benyoucef, B. & Nacer, T., 2016. "Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 333-345.
    17. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    18. Almorox, Javier & Voyant, Cyril & Bailek, Nadjem & Kuriqi, Alban & Arnaldo, J.A., 2021. "Total solar irradiance's effect on the performance of empirical models for estimating global solar radiation: An empirical-based review," Energy, Elsevier, vol. 236(C).
    19. Andrius Tamošiūnas, 2023. "Selecting Rooftop Solar Photovoltaic Modules by Measuring Their Attractiveness by a Categorical-Based Evaluation Technique (MACBETH): The Case of Lithuania," Energies, MDPI, vol. 16(7), pages 1-22, March.
    20. Ivan Hajdukovic, 2022. "The impact of international trade on the price of solar photovoltaic modules: empirical evidence," EconomiA, Emerald Group Publishing Limited, vol. 23(1), pages 88-104, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123014660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.