IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123013514.html
   My bibliography  Save this article

Using architectural glazing systems to harness solar thermal potential for energy savings and indoor comfort

Author

Listed:
  • Wang, Nan
  • Ghaeili, Neda
  • Wang, Julian
  • Feng, Yanxiao
  • Zhang, Enhe
  • Chen, Chenshun

Abstract

The capacity of windows to transmit solar irradiance contributes significantly to indoor environments, which facilitates supplemental warmth courtesy of shortwave solar irradiance, impacting both human comfort and building energy dynamics. This study explores the impact of window glazing on indoor thermal comfort and building energy dynamics through shortwave solar irradiance. It presents a comprehensive analysis of 5,138 glazing systems and introduces a novel thermal effect index. This index was generated using a spectrally-resolved method to classify windows based on their capacity to transmit solar energy. The index divides the quantified thermal effects into 10 equally-sized ranges and assigns corresponding indices. In addition to recognizing the influence of specific solar spectral distributions on the thermal effects of glazings, this work also proposes a method for computing effective wavebands of spectral transmittance, allowing for the rapid evaluation of a window's thermal effects under diverse solar spectra. In essence, this study emphasizes the importance of the thermal effect in understanding solar energy utilization and determining implications for energy savings and enhanced indoor thermal comfort. By addressing the interplay between solar energy use and human comfort, this research offers valuable insights for future advanced envelope design and energy management strategies. With this knowledge, we will be better able to tailor advanced envelope products to meet both human needs and energy efficiency goals by harnessing solar energy.

Suggested Citation

  • Wang, Nan & Ghaeili, Neda & Wang, Julian & Feng, Yanxiao & Zhang, Enhe & Chen, Chenshun, 2023. "Using architectural glazing systems to harness solar thermal potential for energy savings and indoor comfort," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013514
    DOI: 10.1016/j.renene.2023.119436
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123013514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Hongshan & Aviv, Dorit & Loyola, Mauricio & Teitelbaum, Eric & Houchois, Nicholas & Meggers, Forrest, 2020. "On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Lu, Xing & O'Neill, Zheng & Li, Yanfei & Niu, Fuxin, 2020. "A novel simulation-based framework for sensor error impact analysis in smart building systems: A case study for a demand-controlled ventilation system," Applied Energy, Elsevier, vol. 263(C).
    3. Yujin Ko & Hyogeun Oh & Hiki Hong & Joonki Min, 2020. "Energy Consumption Verification of SPD Smart Window, Controllable According to Solar Radiation in South Korea," Energies, MDPI, vol. 13(21), pages 1-18, October.
    4. Jorge Luis Aguilar-Santana & Hasila Jarimi & Mariana Velasco-Carrasco & Saffa Riffat, 2020. "Review on window-glazing technologies and future prospects," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 15(1), pages 112-120.
    5. Copper, J.K. & Sproul, A.B., 2013. "Comparative building simulation study utilising measured and estimated solar irradiance for Australian locations," Renewable Energy, Elsevier, vol. 53(C), pages 86-93.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eldho Abraham & Vladyslav Cherpak & Bohdan Senyuk & Jan Bart Hove & Taewoo Lee & Qingkun Liu & Ivan I. Smalyukh, 2023. "Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings," Nature Energy, Nature, vol. 8(4), pages 381-396, April.
    2. Aiman Mohammed & Muhammad Atiq Ur Rehman Tariq & Anne Wai Man Ng & Zeeshan Zaheer & Safwan Sadeq & Mahmood Mohammed & Hooman Mehdizadeh-Rad, 2022. "Reducing the Cooling Loads of Buildings Using Shading Devices: A Case Study in Darwin," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    3. Jerzy Szyszka, 2022. "From Direct Solar Gain to Trombe Wall: An Overview on Past, Present and Future Developments," Energies, MDPI, vol. 15(23), pages 1-25, November.
    4. Koo, Jabeom & Yoon, Sungmin, 2022. "In-situ sensor virtualization and calibration in building systems," Applied Energy, Elsevier, vol. 325(C).
    5. Li, Tianying & Merabtine, Abdelatif & Lachi, Mohammed & Martaj, Nadia & Bennacer, Rachid, 2021. "Experimental study on the thermal comfort in the room equipped with a radiant floor heating system exposed to direct solar radiation," Energy, Elsevier, vol. 230(C).
    6. Xuexiu Zhao & Yanwen Luo & Jiang He, 2020. "Analysis of the Thermal Environment in Pedestrian Space Using 3D Thermal Imaging," Energies, MDPI, vol. 13(14), pages 1-15, July.
    7. Mesloub, Abdelhakim & Ghosh, Aritra & Touahmia, Mabrouk & Albaqawy, Ghazy Abdullah & Alsolami, Badr M. & Ahriz, Atef, 2022. "Assessment of the overall energy performance of an SPD smart window in a hot desert climate," Energy, Elsevier, vol. 252(C).
    8. Ernesto Antonini & Vincenzo Vodola & Jacopo Gaspari & Michaela De Giglio, 2020. "Outdoor Wellbeing and Quality of Life: A Scientific Literature Review on Thermal Comfort," Energies, MDPI, vol. 13(8), pages 1-22, April.
    9. Jae-Hyang Kim & Jongin Hong & Seung-Hoon Han, 2021. "Optimized Physical Properties of Electrochromic Smart Windows to Reduce Cooling and Heating Loads of Office Buildings," Sustainability, MDPI, vol. 13(4), pages 1-30, February.
    10. Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2022. "Assessment of HVAC system operational fault impacts and multiple faults interactions under climate change," Energy, Elsevier, vol. 258(C).
    11. Edson Manyumbu & Viktoria Martin & Justin Ningwei Chiu, 2023. "Prospective PCM–Desiccant Combination with Solar-Assisted Regeneration for the Indoor Comfort Control of an Office in a Warm and Humid Climate—A Numerical Study," Energies, MDPI, vol. 16(14), pages 1-14, July.
    12. Łukasz Amanowicz & Katarzyna Ratajczak & Edyta Dudkiewicz, 2023. "Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review," Energies, MDPI, vol. 16(4), pages 1-39, February.
    13. Joanna Ferdyn-Grygierek & Krzysztof Grygierek, 2024. "Ventilation Methods for Improving the Indoor Air Quality and Energy Efficiency of Multi-Family Buildings in Central Europe," Energies, MDPI, vol. 17(9), pages 1-21, May.
    14. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).
    15. Hanna Koshlak & Borys Basok & Borys Davydenko, 2024. "Heat Transfer through Double-Chamber Glass Unit with Low-Emission Coating," Energies, MDPI, vol. 17(5), pages 1-17, February.
    16. Mohammed Lami & Faris Al-naemi & Hameed Alrashidi & Walid Issa, 2022. "Quantifying of Vision through Polymer Dispersed Liquid Crystal Double-Glazed Window," Energies, MDPI, vol. 15(9), pages 1-23, April.
    17. Zhang, Sheng & Ai, Zhengtao & Lin, Zhang, 2021. "Novel demand-controlled optimization of constant-air-volume mechanical ventilation for indoor air quality, durability and energy saving," Applied Energy, Elsevier, vol. 293(C).
    18. Li, Chunxiao & Cui, Can & Li, Ming, 2023. "A proactive 2-stage indoor CO2-based demand-controlled ventilation method considering control performance and energy efficiency," Applied Energy, Elsevier, vol. 329(C).
    19. Uetsuji, Yasutomo & Yasuda, Yuta & Yamauchi, Shugo & Matsushima, Eiji & Adachi, Maki & Fuji, Masayoshi & Ito, Hirokazu, 2021. "Multiscale study on thermal insulating effect of a hollow silica-coated polycarbonate window for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Ma, Nan & Aviv, Dorit & Guo, Hongshan & Braham, William W., 2021. "Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.