IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5391-d1194494.html
   My bibliography  Save this article

Prospective PCM–Desiccant Combination with Solar-Assisted Regeneration for the Indoor Comfort Control of an Office in a Warm and Humid Climate—A Numerical Study

Author

Listed:
  • Edson Manyumbu

    (Department of Energy Technology, KTH, Brinellvagen 68, SE-10044 Stockholm, Sweden
    School of Engineering Sciences and Technology, Chinhoyi University of Technology, Chinhoyi 7724, Zimbabwe)

  • Viktoria Martin

    (Department of Energy Technology, KTH, Brinellvagen 68, SE-10044 Stockholm, Sweden)

  • Justin Ningwei Chiu

    (Department of Energy Technology, KTH, Brinellvagen 68, SE-10044 Stockholm, Sweden)

Abstract

Favorable thermal conditions within buildings are a necessity. Mechanical air conditioning, although effective, contributes a significant percentage of the world’s total energy use, which contributes to global warming. In addition, the refrigerants used in air conditioning also contribute to global warming. Passive means to provide thermal comfort have therefore been considered as alternative solutions. Phase-change materials (PCMs) have been considered as one passive cooling option. Although this option achieves a certain degree of effectiveness, especially in warm and dry climatic conditions, its effectiveness in warm humid climates is subdued due to its inability to handle humidity. In the present study, the suitability of a novel passive comfort provision strategy that combines a PCM and a desiccant is assessed. The passive system operates in a cycle of two phases: the moderating phase and the regenerating phase. For the proposed strategy, the regeneration process first involves the external desiccant bed, then night air drying using the regenerated external bed; the dried air subsequently regenerates the internal wall surface. The study involves the modeling of the proposed strategy and simulation of its performance. The simulation results indicate the significant potential for providing satisfactory comfort and health conditions through application of a combination of a desiccant and a PCM.

Suggested Citation

  • Edson Manyumbu & Viktoria Martin & Justin Ningwei Chiu, 2023. "Prospective PCM–Desiccant Combination with Solar-Assisted Regeneration for the Indoor Comfort Control of an Office in a Warm and Humid Climate—A Numerical Study," Energies, MDPI, vol. 16(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5391-:d:1194494
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgios D. Kontes & Georgios I. Giannakis & Philip Horn & Simone Steiger & Dimitrios V. Rovas, 2017. "Using Thermostats for Indoor Climate Control in Office Buildings: The Effect on Thermal Comfort," Energies, MDPI, vol. 10(9), pages 1-22, September.
    2. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    3. Kaska, Önder & Yumrutas, Recep & Arpa, Orhan, 2009. "Theoretical and experimental investigation of total equivalent temperature difference (TETD) values for building walls and flat roofs in Turkey," Applied Energy, Elsevier, vol. 86(5), pages 737-747, May.
    4. Jorge Luis Aguilar-Santana & Hasila Jarimi & Mariana Velasco-Carrasco & Saffa Riffat, 2020. "Review on window-glazing technologies and future prospects," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 15(1), pages 112-120.
    5. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    2. Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.
    3. Kangji Li & Lei Pan & Wenping Xue & Hui Jiang & Hanping Mao, 2017. "Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study," Energies, MDPI, vol. 10(2), pages 1-23, February.
    4. Jozef Švajlenka & Mária Kozlovská, 2021. "Factors Influencing the Sustainability of Wood-Based Constructions’ Use from the Perspective of Users," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    5. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    6. Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    7. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    8. Krzysztof Wiśniewski & Gabriela Rutkowska & Katarzyna Jeleniewicz & Norbert Dąbkowski & Jarosław Wójt & Marek Chalecki & Tomasz Wierzbicki, 2024. "Ecologically Friendly Building Materials: A Case Study of Clay–Ash Composites for the Efficient Management of Fly Ash from the Thermal Conversion of Sewage Sludge," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
    9. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    10. Anass Berouine & Radouane Ouladsine & Mohamed Bakhouya & Mohamed Essaaidi, 2020. "Towards a Real-Time Predictive Management Approach of Indoor Air Quality in Energy-Efficient Buildings," Energies, MDPI, vol. 13(12), pages 1-16, June.
    11. Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.
    12. Abdelhakim Mesloub & Aritra Ghosh & Mabrouk Touahmia & Ghazy Abdullah Albaqawy & Emad Noaime & Badr M. Alsolami, 2020. "Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    13. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    14. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    15. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    16. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    17. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    18. Mukhtar, A. & Ng, K.C. & Yusoff, M.Z., 2018. "Design optimization for ventilation shafts of naturally-ventilated underground shelters for improvement of ventilation rate and thermal comfort," Renewable Energy, Elsevier, vol. 115(C), pages 183-198.
    19. Girish Rentala & Yimin Zhu & Neil M. Johannsen, 2021. "Impact of Outdoor Temperature Variations on Thermal State in Experiments Using Immersive Virtual Environment," Sustainability, MDPI, vol. 13(19), pages 1-36, September.
    20. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5391-:d:1194494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.