IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123012958.html
   My bibliography  Save this article

On the comparison of parabolical and cylindrical primary mirrors for linear Fresnel solar concentrators

Author

Listed:
  • Santos, André Vitor
  • Canavarro, Diogo
  • Horta, Pedro
  • Collares-Pereira, Manuel

Abstract

The design of a linear Fresnel concentrator is challenging. One task related to the curvature design of the primary mirrors is the selection of a bent shape: parabolic or cylindrical. This article presents a new and general approach to comparing both shapes. It is based on the root mean square measure of local slope deviations as an overall metric to represent how much a cylindrical mirror deviates from the parabolical one. The presented results show the influence of the design parameters and indicate that for reasonable geometric relations of current commercial linear Fresnel collectors, maximum values of overall slope deviations are lower than 0.7 mrad – more than ten times lower than the size of optical errors of the state-of-the-art mirror panels. Moreover, the main hypothesis is that parabolical and cylindrical primary mirrors would perform similarly when the root mean square slope deviation is low or negligible compared to other sources of beam spread that compose the effective source (e.g., sunshape, specular error, contour error, tracking error). Thus, literature data of reported cases of equivalence were analyzed in terms of worst-case scenarios of the proposed metric to validate this hypothesis, and the results of this analysis corroborate it.

Suggested Citation

  • Santos, André Vitor & Canavarro, Diogo & Horta, Pedro & Collares-Pereira, Manuel, 2023. "On the comparison of parabolical and cylindrical primary mirrors for linear Fresnel solar concentrators," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012958
    DOI: 10.1016/j.renene.2023.119380
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119380?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling & Qiu, Yu, 2018. "A novel optical optimization model for linear Fresnel reflector concentrators," Renewable Energy, Elsevier, vol. 129(PA), pages 486-499.
    2. Qiu, Yu & He, Ya-Ling & Cheng, Ze-Dong & Wang, Kun, 2015. "Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods," Applied Energy, Elsevier, vol. 146(C), pages 162-173.
    3. Abbas, R. & Martínez-Val, J.M., 2015. "Analytic optical design of linear Fresnel collectors with variable widths and shifts of mirrors," Renewable Energy, Elsevier, vol. 75(C), pages 81-92.
    4. Ajdad, H. & Filali Baba, Y. & Al Mers, A. & Merroun, O. & Bouatem, A. & Boutammachte, N., 2019. "Particle swarm optimization algorithm for optical-geometric optimization of linear fresnel solar concentrators," Renewable Energy, Elsevier, vol. 130(C), pages 992-1001.
    5. Pulido-Iparraguirre, Diego & Valenzuela, Loreto & Serrano-Aguilera, Juan-José & Fernández-García, Aránzazu, 2019. "Optimized design of a Linear Fresnel reflector for solar process heat applications," Renewable Energy, Elsevier, vol. 131(C), pages 1089-1106.
    6. Balaji, Shanmugapriya & Reddy, K.S. & Sundararajan, T., 2016. "Optical modelling and performance analysis of a solar LFR receiver system with parabolic and involute secondary reflectors," Applied Energy, Elsevier, vol. 179(C), pages 1138-1151.
    7. Abbas, R. & Martínez-Val, J.M., 2017. "A comprehensive optical characterization of linear Fresnel collectors by means of an analytic study," Applied Energy, Elsevier, vol. 185(P2), pages 1136-1151.
    8. Facão, Jorge & Oliveira, Armando C., 2011. "Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator," Renewable Energy, Elsevier, vol. 36(1), pages 90-96.
    9. Ma, Jun & Wang, Cheng-Long & Zhou, Yuan & Wang, Rui-Dong, 2021. "Optimized design of a linear Fresnel collector with a compound parabolic secondary reflector," Renewable Energy, Elsevier, vol. 171(C), pages 141-148.
    10. Diego Pulido-Iparraguirre & Loreto Valenzuela & Jesús Fernández-Reche & José Galindo & José Rodríguez, 2019. "Design, Manufacturing and Characterization of Linear Fresnel Reflector’s Facets," Energies, MDPI, vol. 12(14), pages 1-15, July.
    11. Benyakhlef, S. & Al Mers, A. & Merroun, O. & Bouatem, A. & Boutammachte, N. & El Alj, S. & Ajdad, H. & Erregueragui, Z. & Zemmouri, E., 2016. "Impact of heliostat curvature on optical performance of Linear Fresnel solar concentrators," Renewable Energy, Elsevier, vol. 89(C), pages 463-474.
    12. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Jun & Wang, Cheng-Long & Zhou, Yuan & Wang, Rui-Dong, 2021. "Optimized design of a linear Fresnel collector with a compound parabolic secondary reflector," Renewable Energy, Elsevier, vol. 171(C), pages 141-148.
    2. Abbas, R. & Sebastián, A. & Montes, M.J. & Valdés, M., 2018. "Optical features of linear Fresnel collectors with different secondary reflector technologies," Applied Energy, Elsevier, vol. 232(C), pages 386-397.
    3. Sebastián, Andrés & Abbas, Rubén & Valdés, Manuel & Casanova, Jesús, 2018. "Innovative thermal storage strategies for Fresnel-based concentrating solar plants with East-West orientation," Applied Energy, Elsevier, vol. 230(C), pages 983-995.
    4. Edouard Montanet & Sylvain Rodat & Quentin Falcoz & Fabien Roget, 2023. "Experimental and Numerical Evaluation of Solar Receiver Heat Losses of a Commercial 9 MWe Linear Fresnel Power Plant," Energies, MDPI, vol. 16(23), pages 1-18, December.
    5. López-Alvarez, José A. & Larraneta, Miguel & Silva-Pérez, Manuel A. & Lillo-Bravo, Isidoro, 2020. "Impact of the variation of the receiver glass envelope transmittance as a function of the incidence angle in the performance of a linear Fresnel collector," Renewable Energy, Elsevier, vol. 150(C), pages 607-615.
    6. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling & Qiu, Yu, 2018. "A novel optical optimization model for linear Fresnel reflector concentrators," Renewable Energy, Elsevier, vol. 129(PA), pages 486-499.
    7. Vouros, Alexandros & Mathioulakis, Emmanouil & Papanicolaou, Elias & Belessiotis, Vassilis, 2019. "On the optimal shape of secondary reflectors for linear Fresnel collectors," Renewable Energy, Elsevier, vol. 143(C), pages 1454-1464.
    8. López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Ramírez-Minguela, J.J. & Belman-Flores, J.M. & Jaramillo, O.A., 2020. "Optimization of a Linear Fresnel Reflector Applying Computational Fluid Dynamics, Entropy Generation Rate and Evolutionary Programming," Renewable Energy, Elsevier, vol. 152(C), pages 698-712.
    9. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.
    10. Memme, Samuele & Fossa, Marco, 2023. "Ray tracing analysis of linear Fresnel concentrators and the effect of plant azimuth on their optical efficiency," Renewable Energy, Elsevier, vol. 216(C).
    11. Vouros, Alexandros & Mathioulakis, Emmanouil & Papanicolaou, Elias & Belessiotis, Vassilis, 2020. "Performance evaluation of a linear Fresnel collector with catoptric subsets," Renewable Energy, Elsevier, vol. 156(C), pages 68-83.
    12. Qiu, Yu & Li, Ming-Jia & Wang, Kun & Liu, Zhan-Bin & Xue, Xiao-Dai, 2017. "Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 1394-1407.
    13. Sánchez-González, Alberto & Gómez-Hernández, Jesús, 2020. "Beam-down linear Fresnel reflector: BDLFR," Renewable Energy, Elsevier, vol. 146(C), pages 802-815.
    14. Barbón, A. & López-Smeetz, C. & Bayón, L. & Pardellas, A., 2020. "Wind effects on heat loss from a receiver with longitudinal tilt angle of small-scale linear Fresnel reflectors for urban applications," Renewable Energy, Elsevier, vol. 162(C), pages 2166-2181.
    15. de Sá, Alexandre Bittencourt & Pigozzo Filho, Victor César & Tadrist, Lounès & Passos, Júlio César, 2021. "Experimental study of a linear Fresnel concentrator: A new procedure for optical and heat losses characterization," Energy, Elsevier, vol. 232(C).
    16. Santos, Andre V. & Canavarro, Diogo & Collares-Pereira, Manuel, 2021. "The gap angle as a design criterion to determine the position of linear Fresnel primary mirrors," Renewable Energy, Elsevier, vol. 163(C), pages 1397-1407.
    17. Roberto Grena, 2024. "Geometrical Aspects of the Optics of Linear Fresnel Concentrators: A Review," Energies, MDPI, vol. 17(14), pages 1-39, July.
    18. Reddy, K.S. & Balaji, Shanmugapriya & Sundararajan, T., 2018. "Estimation of heat losses due to wind effects from linear parabolic secondary reflector –receiver of solar LFR module," Energy, Elsevier, vol. 150(C), pages 410-433.
    19. Wang, Kun & He, Ya-Ling & Qiu, Yu & Zhang, Yuwen, 2016. "A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver," Renewable Energy, Elsevier, vol. 89(C), pages 93-107.
    20. Roostaee, Amin & Ameri, Mehran, 2019. "Effect of Linear Fresnel Concentrators field key parameters on reflectors configuration, Trapezoidal Cavity Receiver dimension, and heat loss," Renewable Energy, Elsevier, vol. 134(C), pages 1447-1464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.