IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3564-d1439038.html
   My bibliography  Save this article

Geometrical Aspects of the Optics of Linear Fresnel Concentrators: A Review

Author

Listed:
  • Roberto Grena

    (C.R. ENEA Casaccia, Via Anguillarese 301, 00123 Roma, Italy)

Abstract

Linear Fresnel concentrators (LFR) are widely seen by the scientific community as one of the most promising systems for the production of solar energy via thermal plants or concentrated photovoltaics. The produced energy depends on the optical efficiency of the LFR, which is mainly dictated by the geometry of the plant. For this reason, the analysis of LFR geometry and its effects on optical behavior is a crucial step in the design and optimization of a Fresnel plant. The theoretical and computational tools used to model the optics of a LFR are fundamental in research on energy production. In this review, geometrical aspects of the optics of linear Fresnel concentrators are presented, with a detailed discussion of the parameters required to define the geometry of a plant and of the main optical concepts. After an overview of the literature on the subject, the main part of the review is dedicated to summarising useful formulas and outlining general procedures for optical simulations. These include (i) a ray-tracing procedure to simulate a mirror field, and (ii) a fast quasi-analytical method useful for optimizations and on-the-fly computations.

Suggested Citation

  • Roberto Grena, 2024. "Geometrical Aspects of the Optics of Linear Fresnel Concentrators: A Review," Energies, MDPI, vol. 17(14), pages 1-39, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3564-:d:1439038
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiu, Yu & Li, Ming-Jia & Wang, Kun & Liu, Zhan-Bin & Xue, Xiao-Dai, 2017. "Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 1394-1407.
    2. Singh, Panna Lal & Sarviya, R.M. & Bhagoria, J.L., 2010. "Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers," Applied Energy, Elsevier, vol. 87(2), pages 541-550, February.
    3. Qiu, Yu & He, Ya-Ling & Wu, Ming & Zheng, Zhang-Jing, 2016. "A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver," Renewable Energy, Elsevier, vol. 97(C), pages 129-144.
    4. Memme, Samuele & Fossa, Marco, 2024. "A novel approach for incidence angle modifier calculation of arbitrarily oriented linear Fresnel collectors: Theory, simulations and case studies," Renewable Energy, Elsevier, vol. 222(C).
    5. Natarajan, Sendhil Kumar & Reddy, K.S. & Mallick, Tapas Kumar, 2012. "Heat loss characteristics of trapezoidal cavity receiver for solar linear concentrating system," Applied Energy, Elsevier, vol. 93(C), pages 523-531.
    6. Beltagy, Hani & Semmar, Djaffar & Lehaut, Christophe & Said, Noureddine, 2017. "Theoretical and experimental performance analysis of a Fresnel type solar concentrator," Renewable Energy, Elsevier, vol. 101(C), pages 782-793.
    7. Montes, María J. & Rubbia, Carlo & Abbas, Rubén & Martínez-Val, José M., 2014. "A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power," Energy, Elsevier, vol. 73(C), pages 192-203.
    8. Abbas, R. & Martínez-Val, J.M., 2015. "Analytic optical design of linear Fresnel collectors with variable widths and shifts of mirrors," Renewable Energy, Elsevier, vol. 75(C), pages 81-92.
    9. Cesar Lucio & Omar Behar & Bassam Dally, 2023. "Techno-Economic Assessment of CPVT Spectral Splitting Technology: A Case Study on Saudi Arabia," Energies, MDPI, vol. 16(14), pages 1-23, July.
    10. Abbas, R. & Martínez-Val, J.M., 2017. "A comprehensive optical characterization of linear Fresnel collectors by means of an analytic study," Applied Energy, Elsevier, vol. 185(P2), pages 1136-1151.
    11. Facão, Jorge & Oliveira, Armando C., 2011. "Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator," Renewable Energy, Elsevier, vol. 36(1), pages 90-96.
    12. Abbas, R. & Muñoz, J. & Martínez-Val, J.M., 2012. "Steady-state thermal analysis of an innovative receiver for linear Fresnel reflectors," Applied Energy, Elsevier, vol. 92(C), pages 503-515.
    13. Sait, Hani H. & Martinez-Val, Jose M. & Abbas, Ruben & Munoz-Anton, Javier, 2015. "Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors," Applied Energy, Elsevier, vol. 141(C), pages 175-189.
    14. Memme, Samuele & Fossa, Marco, 2023. "Ray tracing analysis of linear Fresnel concentrators and the effect of plant azimuth on their optical efficiency," Renewable Energy, Elsevier, vol. 216(C).
    15. Vouros, Alexandros & Mathioulakis, Emmanouil & Papanicolaou, Elias & Belessiotis, Vassilis, 2019. "On the optimal shape of secondary reflectors for linear Fresnel collectors," Renewable Energy, Elsevier, vol. 143(C), pages 1454-1464.
    16. Kincaid, Nicholas & Mungas, Greg & Kramer, Nicholas & Wagner, Michael & Zhu, Guangdong, 2018. "An optical performance comparison of three concentrating solar power collector designs in linear Fresnel, parabolic trough, and central receiver," Applied Energy, Elsevier, vol. 231(C), pages 1109-1121.
    17. López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Ramírez-Minguela, J.J. & Belman-Flores, J.M. & Jaramillo, O.A., 2020. "Optimization of a Linear Fresnel Reflector Applying Computational Fluid Dynamics, Entropy Generation Rate and Evolutionary Programming," Renewable Energy, Elsevier, vol. 152(C), pages 698-712.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbas, R. & Sebastián, A. & Montes, M.J. & Valdés, M., 2018. "Optical features of linear Fresnel collectors with different secondary reflector technologies," Applied Energy, Elsevier, vol. 232(C), pages 386-397.
    2. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling & Qiu, Yu, 2018. "A novel optical optimization model for linear Fresnel reflector concentrators," Renewable Energy, Elsevier, vol. 129(PA), pages 486-499.
    3. Roostaee, Amin & Ameri, Mehran, 2019. "Effect of Linear Fresnel Concentrators field key parameters on reflectors configuration, Trapezoidal Cavity Receiver dimension, and heat loss," Renewable Energy, Elsevier, vol. 134(C), pages 1447-1464.
    4. Sebastián, Andrés & Abbas, Rubén & Valdés, Manuel & Casanova, Jesús, 2018. "Innovative thermal storage strategies for Fresnel-based concentrating solar plants with East-West orientation," Applied Energy, Elsevier, vol. 230(C), pages 983-995.
    5. Ma, Jun & Wang, Cheng-Long & Zhou, Yuan & Wang, Rui-Dong, 2021. "Optimized design of a linear Fresnel collector with a compound parabolic secondary reflector," Renewable Energy, Elsevier, vol. 171(C), pages 141-148.
    6. Ma, Jun & Liu, Fang & Liu, Chao & Wang, Rong-Ji & Wang, Cheng-Long, 2024. "Optimal curvature radius of cylindrical mirrors in linear Fresnel reflectors," Renewable Energy, Elsevier, vol. 229(C).
    7. Memme, Samuele & Fossa, Marco, 2024. "A novel approach for incidence angle modifier calculation of arbitrarily oriented linear Fresnel collectors: Theory, simulations and case studies," Renewable Energy, Elsevier, vol. 222(C).
    8. Edouard Montanet & Sylvain Rodat & Quentin Falcoz & Fabien Roget, 2023. "Experimental and Numerical Evaluation of Solar Receiver Heat Losses of a Commercial 9 MWe Linear Fresnel Power Plant," Energies, MDPI, vol. 16(23), pages 1-18, December.
    9. Abbas, R. & Martínez-Val, J.M., 2017. "A comprehensive optical characterization of linear Fresnel collectors by means of an analytic study," Applied Energy, Elsevier, vol. 185(P2), pages 1136-1151.
    10. Memme, Samuele & Fossa, Marco, 2023. "Ray tracing analysis of linear Fresnel concentrators and the effect of plant azimuth on their optical efficiency," Renewable Energy, Elsevier, vol. 216(C).
    11. Hack, Madeline & Zhu, Guangdong & Wendelin, Tim, 2017. "Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs," Applied Energy, Elsevier, vol. 208(C), pages 1441-1451.
    12. Barbón, A. & Barbón, N. & Bayón, L. & Sánchez-Rodríguez, J.A., 2018. "Parametric study of the small scale linear Fresnel reflector," Renewable Energy, Elsevier, vol. 116(PA), pages 64-74.
    13. Santos, Andre V. & Canavarro, Diogo & Collares-Pereira, Manuel, 2021. "The gap angle as a design criterion to determine the position of linear Fresnel primary mirrors," Renewable Energy, Elsevier, vol. 163(C), pages 1397-1407.
    14. Reddy, K.S. & Balaji, Shanmugapriya & Sundararajan, T., 2018. "Estimation of heat losses due to wind effects from linear parabolic secondary reflector –receiver of solar LFR module," Energy, Elsevier, vol. 150(C), pages 410-433.
    15. Hongn, Marcos & Flores Larsen, Silvana, 2018. "Hydrothermal model for small-scale linear Fresnel absorbers with non-uniform stepwise solar distribution," Applied Energy, Elsevier, vol. 223(C), pages 329-346.
    16. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Investigation of a star flow insert in a parabolic trough solar collector," Applied Energy, Elsevier, vol. 224(C), pages 86-102.
    17. Alireza Rafiei & Reyhaneh Loni & Gholamhassan Najafi & Talal Yusaf, 2020. "Study of PTC System with Rectangular Cavity Receiver with Different Receiver Tube Shapes Using Oil, Water and Air," Energies, MDPI, vol. 13(8), pages 1-24, April.
    18. Pulido-Iparraguirre, Diego & Valenzuela, Loreto & Serrano-Aguilera, Juan-José & Fernández-García, Aránzazu, 2019. "Optimized design of a Linear Fresnel reflector for solar process heat applications," Renewable Energy, Elsevier, vol. 131(C), pages 1089-1106.
    19. Qiu, Yu & He, Ya-Ling & Wu, Ming & Zheng, Zhang-Jing, 2016. "A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver," Renewable Energy, Elsevier, vol. 97(C), pages 129-144.
    20. Qiu, Yu & Li, Ming-Jia & Wang, Kun & Liu, Zhan-Bin & Xue, Xiao-Dai, 2017. "Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 1394-1407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3564-:d:1439038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.