IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123011333.html
   My bibliography  Save this article

Effect of the integral length scales of turbulent inflows on wind turbine loads

Author

Listed:
  • Stanislawski, Brooke J.
  • Thedin, Regis
  • Sharma, Ashesh
  • Branlard, Emmanuel
  • Vijayakumar, Ganesh
  • Sprague, Michael A.

Abstract

As wind turbines become larger, the fluctuations in the inflow become increasingly influential in the turbine structural loading. These fluctuations are characterized by the integral length scale, which represents the average size of the largest energy-containing turbulent eddies. Current design standards neglect the varying integral length scales that characterize inflows of wind turbines in operation. Using large-eddy simulations, we generate turbulent inflows of varying integral length scales and quantify the loads of the IEA 15-MW reference wind turbine. Results illustrate that the impact of turbulence on rotor and tower loads is up to 10 times greater than the impact of the mean shear profile. Increasing integral length scales from 0.3x to 0.5x the rotor diameter reduces blade root flapwise moments and rotor and tower loads. Increasing integral length scales from 0.5x to 1.7x the rotor diameter increases the rotor aerodynamic thrust force and the blade root flapwise shear loads and decreases the tower base torsional moment and the tilting and yawing rotor aerodynamic moments. Additionally, turbulence intensity has a greater impact on wind turbine loads than integral length scales. Findings indicate that design standards should consider varying integral length scales for accurate wind turbine loading characterization in turbulent inflow conditions.

Suggested Citation

  • Stanislawski, Brooke J. & Thedin, Regis & Sharma, Ashesh & Branlard, Emmanuel & Vijayakumar, Ganesh & Sprague, Michael A., 2023. "Effect of the integral length scales of turbulent inflows on wind turbine loads," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011333
    DOI: 10.1016/j.renene.2023.119218
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doubrawa, Paula & Churchfield, Matthew J. & Godvik, Marte & Sirnivas, Senu, 2019. "Load response of a floating wind turbine to turbulent atmospheric flow," Applied Energy, Elsevier, vol. 242(C), pages 1588-1599.
    2. Dimitrov, Nikolay & Natarajan, Anand & Mann, Jakob, 2017. "Effects of normal and extreme turbulence spectral parameters on wind turbine loads," Renewable Energy, Elsevier, vol. 101(C), pages 1180-1193.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning," Applied Energy, Elsevier, vol. 300(C).
    2. Zhou, Yang & Xiao, Qing & Liu, Yuanchuan & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng & Pan, Guang & Li, Sunwei, 2022. "Exploring inflow wind condition on floating offshore wind turbine aerodynamic characterisation and platform motion prediction using blade resolved CFD simulation," Renewable Energy, Elsevier, vol. 182(C), pages 1060-1079.
    3. Hosseini, Seyyed Ahmad & Toubeau, Jean-François & De Grève, Zacharie & Vallée, François, 2020. "An advanced day-ahead bidding strategy for wind power producers considering confidence level on the real-time reserve provision," Applied Energy, Elsevier, vol. 280(C).
    4. Rieska Mawarni Putri & Charlotte Obhrai & Jasna Bogunovic Jakobsen & Muk Chen Ong, 2020. "Numerical Analysis of the Effect of Offshore Turbulent Wind Inflow on the Response of a Spar Wind Turbine," Energies, MDPI, vol. 13(10), pages 1-22, May.
    5. Cai, Yefeng & Zhao, Haisheng & Li, Xin & Liu, Yuanchuan, 2023. "Aerodynamic analysis for different operating states of floating offshore wind turbine induced by pitching movement," Energy, Elsevier, vol. 285(C).
    6. Rizwan Haider & Xin Li & Wei Shi & Zaibin Lin & Qing Xiao & Haisheng Zhao, 2024. "Review of Computational Fluid Dynamics in the Design of Floating Offshore Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-37, August.
    7. Liu, Lei & Shi, Yu & Zhang, Zhe & Zhang, Kang & Hu, Fei, 2023. "Analysis of turbulence intensity in the megacity of Beijing by High-frequency observations on a 325-m Tower," Renewable Energy, Elsevier, vol. 217(C).
    8. Asadi, Meysam & Pourhossein, Kazem, 2021. "Wind farm site selection considering turbulence intensity," Energy, Elsevier, vol. 236(C).
    9. Shitang Ke & Lu Xu & Tongguang Wang, 2019. "Aerodynamic Performance and Wind-Induced Responses of Large Wind Turbine Systems with Meso-Scale Typhoon Effects," Energies, MDPI, vol. 12(19), pages 1-24, September.
    10. Ren, Yajun & Shi, Wei & Venugopal, Vengatesan & Zhang, Lixian & Li, Xin, 2024. "Experimental study of tendon failure analysis for a TLP floating offshore wind turbine," Applied Energy, Elsevier, vol. 358(C).
    11. Ren, Guorui & Liu, Jinfu & Wan, Jie & Li, Fei & Guo, Yufeng & Yu, Daren, 2018. "The analysis of turbulence intensity based on wind speed data in onshore wind farms," Renewable Energy, Elsevier, vol. 123(C), pages 756-766.
    12. Zi Lin & Xiaolei Liu, 2020. "Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning," Energies, MDPI, vol. 13(9), pages 1-21, May.
    13. Dong, Hongyang & Zhang, Jincheng & Zhao, Xiaowei, 2021. "Intelligent wind farm control via deep reinforcement learning and high-fidelity simulations," Applied Energy, Elsevier, vol. 292(C).
    14. Dai, S.F. & Liu, H.J. & Chu, Y.J. & Lam, H.F. & Peng, H.Y., 2022. "Impact of corner modification on wind characteristics and wind energy potential over flat roofs of tall buildings," Energy, Elsevier, vol. 241(C).
    15. Chen, Yaling & Lin, Binliang & Liang, Dongfang, 2023. "Interactions between approaching flow and hydrokinetic turbines in a staggered layout," Renewable Energy, Elsevier, vol. 218(C).
    16. Evans, S.P. & Bradney, D.R. & Clausen, P.D., 2018. "Assessing the IEC simplified fatigue load equations for small wind turbine blades: How simple is too simple?," Renewable Energy, Elsevier, vol. 127(C), pages 24-31.
    17. Guo, Feng & Mann, Jakob & Peña, Alfredo & Schlipf, David & Cheng, Po Wen, 2022. "The space-time structure of turbulence for lidar-assisted wind turbine control," Renewable Energy, Elsevier, vol. 195(C), pages 293-310.
    18. Doubrawa, Paula & Churchfield, Matthew J. & Godvik, Marte & Sirnivas, Senu, 2019. "Load response of a floating wind turbine to turbulent atmospheric flow," Applied Energy, Elsevier, vol. 242(C), pages 1588-1599.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.