IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123010996.html
   My bibliography  Save this article

Analysis of turbulence intensity in the megacity of Beijing by High-frequency observations on a 325-m Tower

Author

Listed:
  • Liu, Lei
  • Shi, Yu
  • Zhang, Zhe
  • Zhang, Kang
  • Hu, Fei

Abstract

Turbulent flow over complex urban morphology poses challenges to utilization of distributed wind energy in cities. In this paper, turbulence intensity (TI), which is often used to guide wind turbine design and evaluate wind power production, is analyzed by high-frequency observations on a 325-m tower located in the downtown of Beijing, China. The results show that the characteristics of TI, including the diurnal variation, the statistical distribution, and the relations between TI and wind speeds near the ground are significantly different from these at higher heights. It is also found that the normal turbulence model (NTM) with the parameters recommended by the IEC standard cannot fit the data well. The new NTM parameters are given by the least-square fittings. Besides, a three-parameter model is found to fit the data well and performs slightly better than the NTM with the least-square fitting parameters. This research indicates that the NTM parameters in the IEC standard should be re-evaluated in urban areas, and different turbulence model parameters are recommended for higher and lower hub heights.

Suggested Citation

  • Liu, Lei & Shi, Yu & Zhang, Zhe & Zhang, Kang & Hu, Fei, 2023. "Analysis of turbulence intensity in the megacity of Beijing by High-frequency observations on a 325-m Tower," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010996
    DOI: 10.1016/j.renene.2023.119184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010996
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Belabes, Belkacem & Paraschivoiu, Marius, 2021. "Numerical study of the effect of turbulence intensity on VAWT performance," Energy, Elsevier, vol. 233(C).
    2. Ren, Guorui & Liu, Jinfu & Wan, Jie & Li, Fei & Guo, Yufeng & Yu, Daren, 2018. "The analysis of turbulence intensity based on wind speed data in onshore wind farms," Renewable Energy, Elsevier, vol. 123(C), pages 756-766.
    3. Lubitz, William David, 2014. "Impact of ambient turbulence on performance of a small wind turbine," Renewable Energy, Elsevier, vol. 61(C), pages 69-73.
    4. Lee, Kung-Yen & Tsao, Shao-Hua & Tzeng, Chieh-Wen & Lin, Huei-Jeng, 2018. "Influence of the vertical wind and wind direction on the power output of a small vertical-axis wind turbine installed on the rooftop of a building," Applied Energy, Elsevier, vol. 209(C), pages 383-391.
    5. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    6. Dimitrov, Nikolay & Natarajan, Anand & Mann, Jakob, 2017. "Effects of normal and extreme turbulence spectral parameters on wind turbine loads," Renewable Energy, Elsevier, vol. 101(C), pages 1180-1193.
    7. Jani Laine & Jukka Heinonen & Seppo Junnila, 2020. "Pathways to Carbon-Neutral Cities Prior to a National Policy," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    8. Behera, Smruti Ranjan & Dash, Devi Prasad, 2017. "The effect of urbanization, energy consumption, and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 96-106.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhenlong, 2019. "Rotor power performance and flow physics in lateral sinusoidal gusts," Energy, Elsevier, vol. 176(C), pages 917-928.
    2. Huang, Huilan & Luo, Jiabin & Li, Gang, 2023. "Study on the optimal design of vertical axis wind turbine with novel variable solidity type for self-starting capability and aerodynamic performance," Energy, Elsevier, vol. 271(C).
    3. Asadi, Meysam & Pourhossein, Kazem, 2021. "Wind farm site selection considering turbulence intensity," Energy, Elsevier, vol. 236(C).
    4. Francesco Balduzzi & Marco Zini & Andreu Carbó Molina & Gianni Bartoli & Tim De Troyer & Mark C. Runacres & Giovanni Ferrara & Alessandro Bianchini, 2020. "Understanding the Aerodynamic Behavior and Energy Conversion Capability of Small Darrieus Vertical Axis Wind Turbines in Turbulent Flows," Energies, MDPI, vol. 13(11), pages 1-15, June.
    5. Emejeamara, F.C. & Tomlin, A.S., 2020. "A method for estimating the potential power available to building mounted wind turbines within turbulent urban air flows," Renewable Energy, Elsevier, vol. 153(C), pages 787-800.
    6. Li, Liang & Liu, Yuanchuan & Yuan, Zhiming & Gao, Yan, 2018. "Wind field effect on the power generation and aerodynamic performance of offshore floating wind turbines," Energy, Elsevier, vol. 157(C), pages 379-390.
    7. Wu, Zhenlong & Bangga, Galih & Cao, Yihua, 2019. "Effects of lateral wind gusts on vertical axis wind turbines," Energy, Elsevier, vol. 167(C), pages 1212-1223.
    8. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Ritter, Hendrik & Zimmermann, Karl, 2019. "Cap-and-Trade Policy vs. Carbon Taxation: Of Leakage and Linkage," EconStor Preprints 197796, ZBW - Leibniz Information Centre for Economics.
    10. Brahma, Antara & Saikia, Kangkana & Hiloidhari, Moonmoon & Baruah, D.C., 2016. "GIS based planning of a biomethanation power plant in Assam, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 596-608.
    11. Akintayo T. Abolude & Wen Zhou, 2018. "A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties," Energies, MDPI, vol. 12(1), pages 1-14, December.
    12. Ahmed, Saeed & Mahmood, Anzar & Hasan, Ahmad & Sidhu, Guftaar Ahmad Sardar & Butt, Muhammad Fasih Uddin, 2016. "A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 216-225.
    13. Wilman-Santiago Ochoa-Moreno & Byron Alejandro Quito & Carlos Andrés Moreno-Hurtado, 2021. "Foreign Direct Investment and Environmental Quality: Revisiting the EKC in Latin American Countries," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    14. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    15. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    16. Anna Borawska & Mariusz Borawski & Małgorzata Łatuszyńska, 2022. "Effectiveness of Electricity-Saving Communication Campaigns: Neurophysiological Approach," Energies, MDPI, vol. 15(4), pages 1-19, February.
    17. Jing Han Siow & Muhammad Roil Bilad & Wahyu Caesarendra & Jia Jia Leam & Mohammad Azmi Bustam & Nonni Soraya Sambudi & Yusuf Wibisono & Teuku Meurah Indra Mahlia, 2021. "Progress in Development of Nanostructured Manganese Oxide as Catalyst for Oxygen Reduction and Evolution Reaction," Energies, MDPI, vol. 14(19), pages 1-16, October.
    18. Rocha, P.A. Costa & Carneiro de Araujo, J.W. & Lima, R.J. Pontes & Vieira da Silva, M.E. & Albiero, D. & de Andrade, C.F. & Carneiro, F.O.M., 2018. "The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments," Energy, Elsevier, vol. 148(C), pages 169-178.
    19. Mounir Dahmani & Mohamed Mabrouki & Ludovic Ragni, 2021. "Decoupling Analysis of Greenhouse Gas Emissions from Economic Growth: A Case Study of Tunisia," Energies, MDPI, vol. 14(22), pages 1-15, November.
    20. Laura Lakanen & Heli Kumpulainen & Olli Helppi & Kaisa Grönman & Risto Soukka, 2022. "Carbon Handprint Approach for Cities and Regions: A Framework to Reveal and Assess the Potential of Cities in Climate Change Mitigation," Sustainability, MDPI, vol. 14(11), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.