IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v368y2024ics0306261924008444.html
   My bibliography  Save this article

City-scale roof-top photovoltaic deployment planning

Author

Listed:
  • Wei, Tianxi
  • Zhang, Yi
  • Zhang, Yuhang
  • Miao, Rui
  • Kang, Jian
  • Qi, He

Abstract

Under the trends towards large-scale utilization of renewable energy in cities, Distributed Solar Photovoltaic (DSPV) systems installed on roof-tops are gradually attracting more attention as a solution for urban building renovations in China. For a mega city, strategically planning the deployment of numerous scattered DSPV systems is essential due to the long deployment cycle and complex decision-making factors involved. In this study, a city-scale PV deployment decision-making model is proposed. The K-medoid algorithm is used to conduct a multi-step urban unit clustering process based on morphology features. Six indicator categories, including initial PV condition, hourly matching degree, flexible resource dependency, installation scheme stability, deployment difficulty, and ground development potential, are evaluated to assess the deployment potential. The Analytic Hierarchy Process (AHP) and entropy method are employed to comprehensively rank all urban unit clusters and make pilot deployment decisions. A case study is conducted in Shenzhen, China, where 4687 urban units comprising 577,648 buildings are effectively clustered into 30 typical urban units. If the deployment targets of 20%, 40%, 60%, 80% and 100% are pursued, the distribution trend across the city shows the deployment direction from the urban units of more in the north and suburbs, near parks, and less in the high-density urban center. These deployment targets can respectively meet 4.1%, 8.39%, 12.08%, 16.39% and 20.06% of the city's electricity demand.

Suggested Citation

  • Wei, Tianxi & Zhang, Yi & Zhang, Yuhang & Miao, Rui & Kang, Jian & Qi, He, 2024. "City-scale roof-top photovoltaic deployment planning," Applied Energy, Elsevier, vol. 368(C).
  • Handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008444
    DOI: 10.1016/j.apenergy.2024.123461
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924008444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinyue Yan & Ying Yang & Pietro Elia Campana & Jijiang He, 2019. "City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China," Nature Energy, Nature, vol. 4(8), pages 709-717, August.
    2. Arcos-Vargas, Angel & Cansino, José M. & Román-Collado, Rocío, 2018. "Economic and environmental analysis of a residential PV system: A profitable contribution to the Paris agreement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1024-1035.
    3. Mohajeri, Nahid & Assouline, Dan & Guiboud, Berenice & Bill, Andreas & Gudmundsson, Agust & Scartezzini, Jean-Louis, 2018. "A city-scale roof shape classification using machine learning for solar energy applications," Renewable Energy, Elsevier, vol. 121(C), pages 81-93.
    4. Jalil-Vega, Francisca & García Kerdan, Iván & Hawkes, Adam D., 2020. "Spatially-resolved urban energy systems model to study decarbonisation pathways for energy services in cities," Applied Energy, Elsevier, vol. 262(C).
    5. Khan, Jibran & Arsalan, Mudassar Hassan, 2016. "Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: A perspective from planned neighborhood of Karachi – Pakistan," Renewable Energy, Elsevier, vol. 90(C), pages 188-203.
    6. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    7. Chang, Hsiu-Chuan & Ghaddar, Bissan & Nathwani, Jatin, 2022. "Shared community energy storage allocation and optimization," Applied Energy, Elsevier, vol. 318(C).
    8. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    9. Yu, Shiwei & Han, Ruilian & Zhang, Junjie, 2023. "Reassessment of the potential for centralized and distributed photovoltaic power generation in China: On a prefecture-level city scale," Energy, Elsevier, vol. 262(PA).
    10. Quan, Steven Jige & Li, Chaosu, 2021. "Urban form and building energy use: A systematic review of measures, mechanisms, and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Barbour, Edward & Parra, David & Awwad, Zeyad & González, Marta C., 2018. "Community energy storage: A smart choice for the smart grid?," Applied Energy, Elsevier, vol. 212(C), pages 489-497.
    12. Ren, Haoshan & Ma, Zhenjun & Chan, Antoni B. & Sun, Yongjun, 2023. "Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities," Energy, Elsevier, vol. 263(PA).
    13. Yang, Ying & Campana, Pietro Elia & Stridh, Bengt & Yan, Jinyue, 2020. "Potential analysis of roof-mounted solar photovoltaics in Sweden," Applied Energy, Elsevier, vol. 279(C).
    14. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    15. Walch, Alina & Castello, Roberto & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2020. "Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty," Applied Energy, Elsevier, vol. 262(C).
    16. Kohlhepp, Peter & Harb, Hassan & Wolisz, Henryk & Waczowicz, Simon & Müller, Dirk & Hagenmeyer, Veit, 2019. "Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: A review of international field studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 527-547.
    17. Huang, Zhaojian & Mendis, Thushini & Xu, Shen, 2019. "Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 250(C), pages 283-291.
    18. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    19. Sun, Bing & Yu, Yixin & Qin, Chao, 2017. "Should China focus on the distributed development of wind and solar photovoltaic power generation? A comparative study," Applied Energy, Elsevier, vol. 185(P1), pages 421-439.
    20. Huang, Pei & Sun, Yongjun & Lovati, Marco & Zhang, Xingxing, 2021. "Solar-photovoltaic-power-sharing-based design optimization of distributed energy storage systems for performance improvements," Energy, Elsevier, vol. 222(C).
    21. Ren, Haoshan & Ma, Zhenjun & Ming Lun Fong, Alan & Sun, Yongjun, 2022. "Optimal deployment of distributed rooftop photovoltaic systems and batteries for achieving net-zero energy of electric bus transportation in high-density cities," Applied Energy, Elsevier, vol. 319(C).
    22. Victor-Gallardo, Luis & Quirós-Tortós, Jairo, 2023. "Techno-economic comparison of centralized and distributed power generation to support large-scale transport electrification in Costa Rica," Transport Policy, Elsevier, vol. 131(C), pages 120-138.
    23. Yadav, Amit Kumar & Chandel, S.S., 2015. "Solar energy potential assessment of western Himalayan Indian state of Himachal Pradesh using J48 algorithm of WEKA in ANN based prediction model," Renewable Energy, Elsevier, vol. 75(C), pages 675-693.
    24. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    2. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    3. Aslani, Mohammad & Seipel, Stefan, 2022. "Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment," Applied Energy, Elsevier, vol. 306(PA).
    4. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    5. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    6. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    7. Liao, Xuan & Zhu, Rui & Wong, Man Sing & Heo, Joon & Chan, P.W. & Kwok, Coco Yin Tung, 2023. "Fast and accurate estimation of solar irradiation on building rooftops in Hong Kong: A machine learning-based parameterization approach," Renewable Energy, Elsevier, vol. 216(C).
    8. Sun, Tao & Shan, Ming & Rong, Xing & Yang, Xudong, 2022. "Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images," Applied Energy, Elsevier, vol. 315(C).
    9. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    10. Ren, Haoshan & Ma, Zhenjun & Chan, Antoni B. & Sun, Yongjun, 2023. "Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities," Energy, Elsevier, vol. 263(PA).
    11. Kerscher, Selina & Koirala, Arpan & Arboleya, Pablo, 2024. "Grid-optimal energy community planning from a systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Job Taminiau & John Byrne & Jongkyu Kim & Min‐Hwi Kim & Jeongseok Seo, 2022. "Inferential‐ and measurement‐based methods to estimate rooftop “solar city” potential in megacity Seoul, South Korea," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.
    13. Chen, Han & Chen, Wenying, 2021. "Status, trend, economic and environmental impacts of household solar photovoltaic development in China: Modelling from subnational perspective," Applied Energy, Elsevier, vol. 303(C).
    14. Özdemir, Samed & Yavuzdoğan, Ahmet & Bilgilioğlu, Burhan Baha & Akbulut, Zeynep, 2023. "SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data," Renewable Energy, Elsevier, vol. 216(C).
    15. Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
    16. Ki, Jaehong & Yoon, D.K., 2024. "The impact of urban form on residential electricity consumption: Panel data analyses of South Korean urban municipalities," Energy Policy, Elsevier, vol. 186(C).
    17. Babak Ranjgar & Alessandro Niccolai, 2023. "Large-Scale Rooftop Solar Photovoltaic Power Production Potential Assessment: A Case Study for Tehran Metropolitan Area, Iran," Energies, MDPI, vol. 16(20), pages 1-14, October.
    18. Elham Fakhraian & Marc Alier & Francesc Valls Dalmau & Alireza Nameni & Maria José Casañ Guerrero, 2021. "The Urban Rooftop Photovoltaic Potential Determination," Sustainability, MDPI, vol. 13(13), pages 1-18, July.
    19. Zhong, Teng & Zhang, Kai & Chen, Min & Wang, Yijie & Zhu, Rui & Zhang, Zhixin & Zhou, Zixuan & Qian, Zhen & Lv, Guonian & Yan, Jinyue, 2021. "Assessment of solar photovoltaic potentials on urban noise barriers using street-view imagery," Renewable Energy, Elsevier, vol. 168(C), pages 181-194.
    20. Ren, Haoshan & Ma, Zhenjun & Ming Lun Fong, Alan & Sun, Yongjun, 2022. "Optimal deployment of distributed rooftop photovoltaic systems and batteries for achieving net-zero energy of electric bus transportation in high-density cities," Applied Energy, Elsevier, vol. 319(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.