IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v215y2023ics0960148123008571.html
   My bibliography  Save this article

Perfect stabilisation of the electrical efficiency of a set of semi-transparent photovoltaic panels using a smart cooling system

Author

Listed:
  • Habchi, A.
  • Hartiti, B.
  • Labrim, H.
  • Fadili, S.
  • Thevenin, P.
  • Ntsoenzok, E.
  • Faddouli, A.

Abstract

The hybrid solar photovoltaic systems are among the most widely used photovoltaic systems due to their high electrical efficiency. In this paper, a set of smart hybrid photovoltaic systems, integrating a semi-transparent photovoltaic panel with smart hybrid solar collector tubes is proposed. Additionally, a smart cooling system is used for the first time to perfectly stabilize the electrical efficiency of the proposed hybrid systems for different solar irradiation. These new systems are mainly proposed for the first time to improve the electrical efficiency of a semi-transparent photovoltaic panel. To obtain the effects of sun irradiation and linear Fresnel lens on the performance of each hybrid system, a set of mathematical equations is coded in MATLAB software. The main results revealed that the maximum electrical efficiency of the SPV/SHC/Bi2Te3, SPV/SHC/PbTe, SPV/SHC/Bi2Te3/Bi2Te3, SPV/SHC/Bi2Te3/PbTe, and SPV/SHC/PbTe/PbTe in absence of smart cooling system are respectively 2.88%, 3%, 5.76%, 5.88%, and 6% higher than that of the stand-alone SPV system. When these hybrid panels are equipped with smart cooling system, the maximum electrical efficiency of the SPV/SHC/Bi2Te3, SPV/SHC/PbTe, SPV/SHC/Bi2Te3/Bi2Te3, SPV/SHC/Bi2Te3/PbTe and SPV/SHC/PbTe/PbTe are respectively 3.58%, 3.7%, 6.46%, 6.58% and 6.7% higher than that of the conventional SPV system. These results also showed that the SPV/SHC/PbTe/PbTe system with smart cooling system is electrically more efficient than the other systems, which is due to its higher efficiency and power output of 14.1% and 410.271 W. The electrical efficiency of the proposed hybrid systems, equipped with an intelligent cooling system, stays stable for higher and medium values of sun irradiation. These results provide a definitive solution to the problem of decreasing electrical efficiency of photovoltaic panels due to the increase of its temperature.

Suggested Citation

  • Habchi, A. & Hartiti, B. & Labrim, H. & Fadili, S. & Thevenin, P. & Ntsoenzok, E. & Faddouli, A., 2023. "Perfect stabilisation of the electrical efficiency of a set of semi-transparent photovoltaic panels using a smart cooling system," Renewable Energy, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008571
    DOI: 10.1016/j.renene.2023.118951
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123008571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.118951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nixon, J.D. & Bhargava, K. & Halford, A. & Gaura, E., 2021. "Analysis of standalone solar streetlights for improved energy access in displaced settlements," Renewable Energy, Elsevier, vol. 177(C), pages 895-914.
    2. Lv, Song & Yang, Jiahao & Ren, Juwen & Zhang, Bolong & Lai, Yin & Chang, Zhihao, 2023. "Research and numerical analysis on performance optimization of photovoltaic-thermoelectric system incorporated with phase change materials," Energy, Elsevier, vol. 263(PC).
    3. Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
    4. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    5. Mohsenzadeh, Milad & Shafii, M.B. & Jafari mosleh, H., 2017. "A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design," Renewable Energy, Elsevier, vol. 113(C), pages 822-834.
    6. Herrando, María & Markides, Christos N., 2016. "Hybrid PV and solar-thermal systems for domestic heat and power provision in the UK: Techno-economic considerations," Applied Energy, Elsevier, vol. 161(C), pages 512-532.
    7. Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.
    8. Saffa B. Riffat & Erdem Cuce, 2011. "A review on hybrid photovoltaic/thermal collectors and systems," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 6(3), pages 212-241, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Narasingamurthi, Kulasekharan & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Saidur, R., 2022. "Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough con," Applied Energy, Elsevier, vol. 320(C).
    2. Dimri, Neha & Tiwari, Arvind & Tiwari, G.N., 2019. "Comparative study of photovoltaic thermal (PVT) integrated thermoelectric cooler (TEC) fluid collectors," Renewable Energy, Elsevier, vol. 134(C), pages 343-356.
    3. Ren, Xiao & Li, Jing & Hu, Mingke & Pei, Gang & Jiao, Dongsheng & Zhao, Xudong & Ji, Jie, 2019. "Feasibility of an innovative amorphous silicon photovoltaic/thermal system for medium temperature applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Cuce, Erdem & Cuce, Pinar Mert & Bali, Tulin, 2013. "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters," Applied Energy, Elsevier, vol. 111(C), pages 374-382.
    5. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    6. Yusuf, Aminu & Garcia, Davide Astiaso, 2023. "Energy, exergy, economic, and environmental (4E) analyses of bifacial concentrated thermoelectric-photovoltaic systems," Energy, Elsevier, vol. 282(C).
    7. Salari, Ali & Parcheforosh, Ali & Hakkaki-Fard, Ali & Amadeh, Ali, 2020. "A numerical study on a photovoltaic thermal system integrated with a thermoelectric generator module," Renewable Energy, Elsevier, vol. 153(C), pages 1261-1271.
    8. Kwan, Trevor Hocksun & Yao, Qinghe, 2019. "Preliminary study of integrating the vapor compression cycle with concentrated photovoltaic panels for supporting hydrogen production," Renewable Energy, Elsevier, vol. 134(C), pages 828-836.
    9. Obalanlege, Mustapha A. & Xu, Jingyuan & Markides, Christos N. & Mahmoudi, Yasser, 2022. "Techno-economic analysis of a hybrid photovoltaic-thermal solar-assisted heat pump system for domestic hot water and power generation," Renewable Energy, Elsevier, vol. 196(C), pages 720-736.
    10. Li, Guiqiang & Shittu, Samson & Diallo, Thierno M.O. & Yu, Min & Zhao, Xudong & Ji, Jie, 2018. "A review of solar photovoltaic-thermoelectric hybrid system for electricity generation," Energy, Elsevier, vol. 158(C), pages 41-58.
    11. Abdelrazik, Ahmed S. & Al-Sulaiman, FA & Saidur, R. & Ben-Mansour, R., 2018. "A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 110-129.
    12. Yin, Ershuai & Li, Qiang & Li, Dianhong & Xuan, Yimin, 2019. "Experimental investigation on effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials," Energy, Elsevier, vol. 169(C), pages 172-185.
    13. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Fouad Agramelal & Mohamed Sadik & Youssef Moubarak & Saad Abouzahir, 2023. "Smart Street Light Control: A Review on Methods, Innovations, and Extended Applications," Energies, MDPI, vol. 16(21), pages 1-42, November.
    15. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    16. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    17. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    18. Muhammad Nazri Rejab & Omar Mohd Faizan Marwah & Muhammad Akmal Johar & Mohamed Najib Ribuan, 2022. "Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    19. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    20. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.