IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp822-834.html
   My bibliography  Save this article

A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design

Author

Listed:
  • Mohsenzadeh, Milad
  • Shafii, M.B.
  • Jafari mosleh, H.

Abstract

The use of solar energy concentration systems for achieving performance enhancements in the Photovoltaic/thermal hybrid solar systems and reduction of initial costs is an idea that has been studied for years. In this article a new structure for parabolic trough photovoltaic/thermal collector is proposed and its thermal and electrical performances are experimentally investigated. The receiver of this concentrator contains a triangular channel with an outer surface covered with photovoltaic cells and thermoelectric modules with a specific arrangement so that in addition to absorbing heat, a larger portion of the solar radiation is directly converted to electricity. Hence, the performance of the system is enhanced. Performance evaluation of this combined heat and power system that is equipped with one-axis solar tracker in polar mechanism shows that daily average electrical and thermal efficiencies can reach 4.83% and 46.16%, respectively. In addition, the electricity generation capacity of the photovoltaic module applied to this system has become fourfold in comparison with its standard working conditions. As a result, besides simultaneous generation of heat and electricity, the proposed model has a satisfactory performance.

Suggested Citation

  • Mohsenzadeh, Milad & Shafii, M.B. & Jafari mosleh, H., 2017. "A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design," Renewable Energy, Elsevier, vol. 113(C), pages 822-834.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:822-834
    DOI: 10.1016/j.renene.2017.06.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117305517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jin & Xuan, Yimin & Yang, Lili, 2014. "Performance estimation of photovoltaic–thermoelectric hybrid systems," Energy, Elsevier, vol. 78(C), pages 895-903.
    2. Benghanem, M. & Al-Mashraqi, A.A. & Daffallah, K.O., 2016. "Performance of solar cells using thermoelectric module in hot sites," Renewable Energy, Elsevier, vol. 89(C), pages 51-59.
    3. Hashim, H. & Bomphrey, J.J. & Min, G., 2016. "Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system," Renewable Energy, Elsevier, vol. 87(P1), pages 458-463.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Heng & Yue, Han & Huang, Jiguang & Liang, Kai & Chen, Haiping, 2021. "Experimental studies on a low concentrating photovoltaic/thermal (LCPV/T) collector with a thermoelectric generator (TEG) module," Renewable Energy, Elsevier, vol. 171(C), pages 1026-1040.
    2. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "One-day performance evaluation of photovoltaic-thermoelectric hybrid system," Energy, Elsevier, vol. 143(C), pages 337-346.
    3. Huen, Priscilla & Daoud, Walid A., 2017. "Advances in hybrid solar photovoltaic and thermoelectric generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1295-1302.
    4. Li, Guiqiang & Shittu, Samson & Diallo, Thierno M.O. & Yu, Min & Zhao, Xudong & Ji, Jie, 2018. "A review of solar photovoltaic-thermoelectric hybrid system for electricity generation," Energy, Elsevier, vol. 158(C), pages 41-58.
    5. Motiei, P. & Yaghoubi, M. & GoshtashbiRad, E. & Vadiee, A., 2018. "Two-dimensional unsteady state performance analysis of a hybrid photovoltaic-thermoelectric generator," Renewable Energy, Elsevier, vol. 119(C), pages 551-565.
    6. Zhang, Jin & Xuan, Yimin, 2017. "Performance improvement of a photovoltaic - Thermoelectric hybrid system subjecting to fluctuant solar radiation," Renewable Energy, Elsevier, vol. 113(C), pages 1551-1558.
    7. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
    8. Yin, Ershuai & Li, Qiang & Li, Dianhong & Xuan, Yimin, 2019. "Experimental investigation on effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials," Energy, Elsevier, vol. 169(C), pages 172-185.
    9. Alaaeddin, M.H. & Sapuan, S.M. & Zuhri, M.Y.M. & Zainudin, E.S. & AL- Oqla, Faris M., 2019. "Photovoltaic applications: Status and manufacturing prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 318-332.
    10. Shittu, Samson & Li, Guiqiang & Tang, Xin & Zhao, Xudong & Ma, Xiaoli & Badiei, Ali, 2020. "Analysis of thermoelectric geometry in a concentrated photovoltaic-thermoelectric under varying weather conditions," Energy, Elsevier, vol. 202(C).
    11. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    12. Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
    13. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    14. Liang, Tao & Fu, Tong & Hu, Cong & Chen, Xiaohang & Su, Shanhe & Chen, Jincan, 2021. "Optimum matching of photovoltaic–thermophotovoltaic cells efficiently utilizing full-spectrum solar energy," Renewable Energy, Elsevier, vol. 173(C), pages 942-952.
    15. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    16. Hegazy Rezk & Ziad Mohammed Ali & Omer Abdalla & Obai Younis & Mohamed Ramadan Gomaa & Mauia Hashim, 2019. "Hybrid Moth-Flame Optimization Algorithm and Incremental Conductance for Tracking Maximum Power of Solar PV/Thermoelectric System under Different Conditions," Mathematics, MDPI, vol. 7(10), pages 1-21, September.
    17. Arnas Majumder & Amit Kumar & Roberto Innamorati & Costantino Carlo Mastino & Giancarlo Cappellini & Roberto Baccoli & Gianluca Gatto, 2023. "Cooling Methods for Standard and Floating PV Panels," Energies, MDPI, vol. 16(24), pages 1-28, December.
    18. Rezania, A. & Sera, D. & Rosendahl, L.A., 2016. "Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe," Renewable Energy, Elsevier, vol. 99(C), pages 127-135.
    19. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2017. "Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies," Energy, Elsevier, vol. 131(C), pages 230-238.
    20. Mohamed Benghanem & Sofiane Haddad & Ahmed Alzahrani & Adel Mellit & Hamad Almohamadi & Muna Khushaim & Mohamed Salah Aida, 2023. "Evaluation of the Performance of Polycrystalline and Monocrystalline PV Technologies in a Hot and Arid Region: An Experimental Analysis," Sustainability, MDPI, vol. 15(20), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:822-834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.