IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p649-d1026023.html
   My bibliography  Save this article

Experimental Investigation of a Concentrating Bifacial Photovoltaic/Thermal Heat Pump System with a Triangular Trough

Author

Listed:
  • Gülşah Karaca Dolgun

    (Department of Energy Systems Engineering, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey)

  • Onur Vahip Güler

    (Department of Energy Systems Engineering, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey)

  • Aleksandar G. Georgiev

    (Department of Mechanics, Technical University of Sofia, Plovdiv Branch, 25 Tsanko Diustabanov Str., 4000 Plovdiv, Bulgaria)

  • Ali Keçebaş

    (Department of Energy Systems Engineering, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey)

Abstract

The heat absorbed by the heat transfer fluid for cooling a concentrated photovoltaic thermal (CPVT) solar collector can be used for purposes such as residential heating and cooking. Because of the combined production of heat and power, these systems are proposed for individual or commercial use in rural areas. In this study, a hybrid system was proposed to increase the electrical efficiency of the system. Experiments were conducted in winter conditions. Two operational modes were compared, namely a CPVT system with HP (HP-CPVT) and without HP (CPVT). The evaporator of the heat pump was settled inside the triangular trough receiver. The effects of cooling the PV system with a heat pump in the bifacial CPVT system on the electrical and thermal energy efficiencies were investigated. The electricity and thermal energy efficiencies of the CPVT system were calculated as 12.54% and 38.37% in the HP-CPVT system, respectively, and 10.05% and 81.97% in the CPVT system, respectively. The electrical exergy efficiencies of the CPVT system with and without HP were 14.65% and 10.73%, respectively. The thermal exergy efficiencies of the CPVT system with and without HP were 82.47% and 85.63%, respectively. The thermal heat obtained from the HP-CPVT system can be used for heating needs. Thus, the bifacial HP-CPVT system was an example of the micro-CHP system.

Suggested Citation

  • Gülşah Karaca Dolgun & Onur Vahip Güler & Aleksandar G. Georgiev & Ali Keçebaş, 2023. "Experimental Investigation of a Concentrating Bifacial Photovoltaic/Thermal Heat Pump System with a Triangular Trough," Energies, MDPI, vol. 16(2), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:649-:d:1026023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/649/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/649/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Afzali Gorouh, Hossein & Salmanzadeh, Mazyar & Nasseriyan, Pouriya & Hayati, Abolfazl & Cabral, Diogo & Gomes, João & Karlsson, Björn, 2022. "Thermal modelling and experimental evaluation of a novel concentrating photovoltaic thermal collector (CPVT) with parabolic concentrator," Renewable Energy, Elsevier, vol. 181(C), pages 535-553.
    2. Karathanassis, I.K. & Papanicolaou, E. & Belessiotis, V. & Bergeles, G.C., 2019. "Dynamic simulation and exergetic optimization of a Concentrating Photovoltaic/ Thermal (CPVT) system," Renewable Energy, Elsevier, vol. 135(C), pages 1035-1047.
    3. Herez, Amal & El Hage, Hicham & Lemenand, Thierry & Ramadan, Mohamad & Khaled, Mahmoud, 2021. "Parabolic trough photovoltaic/thermal hybrid system: Thermal modeling and parametric analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 224-236.
    4. Francesco Calise & Laura Vanoli, 2012. "Parabolic Trough Photovoltaic/Thermal Collectors: Design and Simulation Model," Energies, MDPI, vol. 5(10), pages 1-23, October.
    5. Calise, Francesco & Palombo, Adolfo & Vanoli, Laura, 2012. "A finite-volume model of a parabolic trough photovoltaic/thermal collector: Energetic and exergetic analyses," Energy, Elsevier, vol. 46(1), pages 283-294.
    6. Valizadeh, Mohammad & Sarhaddi, Faramarz & Mahdavi Adeli, Mohsen, 2019. "Exergy performance assessment of a linear parabolic trough photovoltaic thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 1028-1041.
    7. Buonomano, Annamaria & Calise, Francesco & Dentice d'Accadia, Massimo & Vanoli, Laura, 2013. "A novel solar trigeneration system based on concentrating photovoltaic/thermal collectors. Part 1: Design and simulation model," Energy, Elsevier, vol. 61(C), pages 59-71.
    8. Li, Ming & Ji, Xu & Li, Guoliang & Wei, Shengxian & Li, YingFeng & Shi, Feng, 2011. "Performance study of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal system," Applied Energy, Elsevier, vol. 88(9), pages 3218-3227.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herez, Amal & El Hage, Hicham & Lemenand, Thierry & Ramadan, Mohamad & Khaled, Mahmoud, 2021. "Parabolic trough photovoltaic/thermal hybrid system: Thermal modeling and parametric analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 224-236.
    2. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    3. Calise, Francesco & Dentice d'Accadia, Massimo & Piacentino, Antonio, 2014. "A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 67(C), pages 129-148.
    4. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Liu, Luyao, 2022. "Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of a novel partially covered parabolic trough photovoltaic thermal collector based on life cycle method," Renewable Energy, Elsevier, vol. 200(C), pages 1573-1588.
    5. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    6. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    7. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    8. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    9. Deka, Manash Jyoti & Kamble, Akash Dilip & Das, Dudul & Sharma, Prabhakar & Ali, Shahadath & Kalita, Paragmoni & Bora, Bhaskor Jyoti & Kalita, Pankaj, 2024. "Enhancing the performance of a photovoltaic thermal system with phase change materials: Predictive modelling and evaluation using neural networks," Renewable Energy, Elsevier, vol. 224(C).
    10. Chen, Heng & Mansir, Ibrahim B. & Chauhan, Bhupendra Singh & Al-Zahrani, Ahmed & Deifalla, Ahmed & Hua, Yinhai & Peng, Fan, 2023. "A comprehensive numerical study on the effectiveness of a rotational-based PTC collector integrated porous foam and PV module," Renewable Energy, Elsevier, vol. 215(C).
    11. Kasaeian, Alibakhsh & Tabasi, Sanaz & Ghaderian, Javad & Yousefi, Hossein, 2018. "A review on parabolic trough/Fresnel based photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 193-204.
    12. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Narasingamurthi, Kulasekharan & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Saidur, R., 2022. "Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough con," Applied Energy, Elsevier, vol. 320(C).
    13. Imtiaz Hussain, M. & Lee, Gwi Hyun, 2015. "Experimental and numerical studies of a U-shaped solar energy collector to track the maximum CPV/T system output by varying the flow rate," Renewable Energy, Elsevier, vol. 76(C), pages 735-742.
    14. Noorbakhsh, Hosein & Khoshgoftar Manesh, Mohamad Hasan & Amidpour, Majid, 2023. "Evaluation of an innovative polygeneration system based on integration of gasification process with a thermo electric generator- solid oxide fuel cell - Adsorption desalination system - Thermal photov," Energy, Elsevier, vol. 282(C).
    15. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    16. Majedul Islam & Prasad Yarlagadda & Azharul Karim, 2018. "Effect of the Orientation Schemes of the Energy Collection Element on the Optical Performance of a Parabolic Trough Concentrating Collector," Energies, MDPI, vol. 12(1), pages 1-20, December.
    17. Li, Jinyu & Yang, Zhengda & Wang, Yiya & Dong, Qiwei & Qi, Shitao & Huang, Chenxing & Wang, Xinwei & Lin, Riyi, 2023. "A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: Optical and thermal performance investigations," Renewable Energy, Elsevier, vol. 206(C), pages 609-622.
    18. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Wang, Qiushi & Liu, Luyao, 2023. "Multi-criteria performance analysis and optimization of a solar-driven CCHP system based on PEMWE, SOFC, TES, and novel PVT for hotel and office buildings," Renewable Energy, Elsevier, vol. 206(C), pages 1249-1264.
    19. Alzahrani, Mussad & Shanks, Katie & Mallick, Tapas K., 2021. "Advances and limitations of increasing solar irradiance for concentrating photovoltaics thermal system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Atheaya, Deepali & Tiwari, Arvind & Tiwari, G.N. & Al-Helal, I.M., 2016. "Performance evaluation of inverted absorber photovoltaic thermal compound parabolic concentrator (PVT-CPC): Constant flow rate mode," Applied Energy, Elsevier, vol. 167(C), pages 70-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:649-:d:1026023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.