IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v166y2020icp136-146.html
   My bibliography  Save this article

Photovoltaic cleaning frequency optimization under different degradation rate patterns

Author

Listed:
  • Micheli, Leonardo
  • Theristis, Marios
  • Talavera, Diego L.
  • Almonacid, Florencia
  • Stein, Joshua S.
  • Fernández, Eduardo F.

Abstract

Dust accumulation significantly affects the performance of photovoltaic modules and its impact can be mitigated by various cleaning methods. Optimizing the cleaning frequency is essential to minimize the soiling losses and, at the same time, the costs. However, the effectiveness of cleaning lowers with time because of the reduced energy yield due to degradation. Additionally, economic factors such as the escalation in electricity price and inflation can compound or counterbalance the effect of degradation on the soiling mitigation profits. The present study analyzes the impact of degradation, escalation in electricity price and inflation on the revenues and costs of cleanings and proposes a methodology to maximize the profits of soiling mitigation of any system. The energy performance and soiling losses of a 1 MW system installed in southern Spain were analyzed and integrated with theoretical linear and nonlinear degradation rate patterns. The Levelized Cost of Energy and Net Present Value were used as criteria to identify the optimum cleaning strategies. The results showed that the two metrics convey distinct cleaning recommendations, as they are influenced by different factors. For the given site, despite the degradation effects, the optimum cleaning frequency is found to increase with time of operation.

Suggested Citation

  • Micheli, Leonardo & Theristis, Marios & Talavera, Diego L. & Almonacid, Florencia & Stein, Joshua S. & Fernández, Eduardo F., 2020. "Photovoltaic cleaning frequency optimization under different degradation rate patterns," Renewable Energy, Elsevier, vol. 166(C), pages 136-146.
  • Handle: RePEc:eee:renene:v:166:y:2020:i:c:p:136-146
    DOI: 10.1016/j.renene.2020.11.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120317870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ilse, Klemens K. & Figgis, Benjamin W. & Naumann, Volker & Hagendorf, Christian & Bagdahn, Jörg, 2018. "Fundamentals of soiling processes on photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 239-254.
    2. Talavera, D.L. & Muñoz-Cerón, Emilio & Ferrer-Rodríguez, J.P. & Pérez-Higueras, Pedro J., 2019. "Assessment of cost-competitiveness and profitability of fixed and tracking photovoltaic systems: The case of five specific sites," Renewable Energy, Elsevier, vol. 134(C), pages 902-913.
    3. Micheli, Leonardo & Fernández, Eduardo F. & Aguilera, Jorge T. & Almonacid, Florencia, 2021. "Economics of seasonal photovoltaic soiling and cleaning optimization scenarios," Energy, Elsevier, vol. 215(PA).
    4. Phinikarides, Alexander & Kindyni, Nitsa & Makrides, George & Georghiou, George E., 2014. "Review of photovoltaic degradation rate methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 143-152.
    5. Conceição, Ricardo & Vázquez, Iñigo & Fialho, Luis & García, Daniel, 2020. "Soiling and rainfall effect on PV technology in rural Southern Europe," Renewable Energy, Elsevier, vol. 156(C), pages 743-747.
    6. Rodrigo, Pedro M. & Gutiérrez, Sebastián & Micheli, Leonardo & Fernández, Eduardo F. & Almonacid, Florencia, 2020. "Optimum cleaning schedule of photovoltaic systems based on levelised cost of energy and case study in central Mexico," MPRA Paper 104173, University Library of Munich, Germany.
    7. Jiménez-Castillo, G. & Muñoz-Rodriguez, F.J. & Rus-Casas, C. & Talavera, D.L., 2020. "A new approach based on economic profitability to sizing the photovoltaic generator in self-consumption systems without storage," Renewable Energy, Elsevier, vol. 148(C), pages 1017-1033.
    8. Ullah, Asad & Amin, Amir & Haider, Turab & Saleem, Murtaza & Butt, Nauman Zafar, 2020. "Investigation of soiling effects, dust chemistry and optimum cleaning schedule for PV modules in Lahore, Pakistan," Renewable Energy, Elsevier, vol. 150(C), pages 456-468.
    9. Conceição, Ricardo & Silva, Hugo G. & Fialho, Luis & Lopes, Francis M. & Collares-Pereira, Manuel, 2019. "PV system design with the effect of soiling on the optimum tilt angle," Renewable Energy, Elsevier, vol. 133(C), pages 787-796.
    10. You, Siming & Lim, Yu Jie & Dai, Yanjun & Wang, Chi-Hwa, 2018. "On the temporal modelling of solar photovoltaic soiling: Energy and economic impacts in seven cities," Applied Energy, Elsevier, vol. 228(C), pages 1136-1146.
    11. Mani, Monto & Pillai, Rohit, 2010. "Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3124-3131, December.
    12. Figgis, Benjamin & Ennaoui, Ahmed & Ahzi, Said & Rémond, Yves, 2017. "Review of PV soiling particle mechanics in desert environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 872-881.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucia Cattani & Paolo Cattani & Anna Magrini, 2021. "Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment," Energies, MDPI, vol. 14(14), pages 1-17, July.
    2. Hasan Masrur & Keifa Vamba Konneh & Mikaeel Ahmadi & Kaisar R. Khan & Mohammad Lutfi Othman & Tomonobu Senjyu, 2021. "Assessing the Techno-Economic Impact of Derating Factors on Optimally Tilted Grid-Tied Photovoltaic Systems," Energies, MDPI, vol. 14(4), pages 1-21, February.
    3. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    4. Romero-Fiances, Irene & Livera, Andreas & Theristis, Marios & Makrides, George & Stein, Joshua S. & Nofuentes, Gustavo & de la Casa, Juan & Georghiou, George E., 2022. "Impact of duration and missing data on the long-term photovoltaic degradation rate estimation," Renewable Energy, Elsevier, vol. 181(C), pages 738-748.
    5. Micheli, Leonardo & Theristis, Marios & Talavera, Diego L. & Nofuentes, Gustavo & Stein, Joshua S. & Almonacid, Florencia & Fernández, Eduardo F., 2022. "The economic value of photovoltaic performance loss mitigation in electricity spot markets," Renewable Energy, Elsevier, vol. 199(C), pages 486-497.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Micheli, Leonardo & Theristis, Marios & Talavera, Diego L. & Almonacid, Florencia & Stein, Joshua S. & Fernandez, Eduardo F., 2020. "Photovoltaic Cleaning Frequency Optimization Under Different Degradation Rate Patterns," MPRA Paper 105008, University Library of Munich, Germany, revised 07 Oct 2020.
    3. Micheli, Leonardo & Theristis, Marios & Talavera, Diego L. & Nofuentes, Gustavo & Stein, Joshua S. & Almonacid, Florencia & Fernández, Eduardo F., 2022. "The economic value of photovoltaic performance loss mitigation in electricity spot markets," Renewable Energy, Elsevier, vol. 199(C), pages 486-497.
    4. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    5. Micheli, Leonardo & Fernandez, Eduardo F. & Aguilera, Jorge T. & Almonacid, Florencia, 2020. "Economics of seasonal photovoltaic soiling and cleaning optimization scenarios," MPRA Paper 104104, University Library of Munich, Germany.
    6. Rodrigo, Pedro M. & Gutiérrez, Sebastián & Micheli, Leonardo & Fernández, Eduardo F. & Almonacid, Florencia, 2020. "Optimum cleaning schedule of photovoltaic systems based on levelised cost of energy and case study in central Mexico," MPRA Paper 104173, University Library of Munich, Germany.
    7. Muñoz-García, Miguel-Ángel & Fouris, Tom & Pilat, Eric, 2021. "Analysis of the soiling effect under different conditions on different photovoltaic glasses and cells using an indoor soiling chamber," Renewable Energy, Elsevier, vol. 163(C), pages 1560-1568.
    8. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    9. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Optimizing wind barrier and photovoltaic array configuration in soiling mitigation," Renewable Energy, Elsevier, vol. 163(C), pages 225-236.
    10. Mithhu, Md. Mahamudul Hasan & Rima, Tahmina Ahmed & Khan, M. Ryyan, 2021. "Global analysis of optimal cleaning cycle and profit of soiling affected solar panels," Applied Energy, Elsevier, vol. 285(C).
    11. Micheli, Leonardo & Fernández, Eduardo F. & Aguilera, Jorge T. & Almonacid, Florencia, 2021. "Economics of seasonal photovoltaic soiling and cleaning optimization scenarios," Energy, Elsevier, vol. 215(PA).
    12. Dahlioui, Dounia & El Hamdani, Fayrouz & Djdiaa, Abdelali & Martínez López, Teodoro & Bouzekri, Hicham, 2023. "Assessment of dry and wet cleaning of aluminum mirrors toward water consumption reduction," Renewable Energy, Elsevier, vol. 205(C), pages 248-255.
    13. Adak, Deepanjana & Bhattacharyya, Raghunath & Barshilia, Harish C., 2022. "A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Isaacs, Stewart & Kalashnikova, Olga & Garay, Michael J. & van Donkelaar, Aaron & Hammer, Melanie S. & Lee, Huikyo & Wood, Danielle, 2023. "Dust soiling effects on decentralized solar in West Africa," Applied Energy, Elsevier, vol. 340(C).
    15. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    16. Azouzoute, Alae & Zitouni, Houssain & El Ydrissi, Massaab & Hajjaj, Charaf & Garoum, Mohammed & Bennouna, El Ghali & Ghennioui, Abdellatif, 2021. "Developing a cleaning strategy for hybrid solar plants PV/CSP: Case study for semi-arid climate," Energy, Elsevier, vol. 228(C).
    17. Aritra Ghosh, 2020. "Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power," Challenges, MDPI, vol. 11(1), pages 1-22, May.
    18. Hanifi, Hamed & Pander, Matthias & Zeller, Ulli & Ilse, Klemens & Dassler, David & Mirza, Mark & Bahattab, Mohammed A. & Jaeckel, Bengt & Hagendorf, Christian & Ebert, Matthias & Gottschalg, Ralph & S, 2020. "Loss analysis and optimization of PV module components and design to achieve higher energy yield and longer service life in desert regions," Applied Energy, Elsevier, vol. 280(C).
    19. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    20. Ilse, Klemens K. & Figgis, Benjamin W. & Naumann, Volker & Hagendorf, Christian & Bagdahn, Jörg, 2018. "Fundamentals of soiling processes on photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 239-254.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:166:y:2020:i:c:p:136-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.