IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v210y2023icp364-374.html
   My bibliography  Save this article

Impacts of seasonal flow variation on riverine hydrokinetic energy resources and optimal turbine location – Case study on the Rivière Rouge, Québec, Canada

Author

Listed:
  • Kirby, Katelyn
  • Rennie, Colin D.
  • Cousineau, Julien
  • Ferguson, Sean
  • Nistor, Ioan

Abstract

Hydrokinetic energy resource assessment is a crucial prerequisite for strategic turbine deployment and energy extraction. Despite advancements in analytical tools, resource assessment is often completed without detailed investigation of spatial and temporal flow variation and implications on optimal turbine placement. A case study was conducted on the Rivière Rouge, Québec, Canada to estimate the hydrokinetic energy resource, to locate the optimal turbine placement, and to study the impact of seasonal flow variation. The primary optimal turbine location did not change, but the second, third, and fourth optimal locations were impacted. Assuming a hypothetical deployment of one turbine with a 1 m2 swept area, the theoretical hydrokinetic energy resource for the site was 21.8 MWh per year in the optimal turbine locations and 6.2 MWh per year using the reach-averaged velocity. This difference illustrates the need to consider the entire velocity flow field in hydrokinetic energy assessments. To conduct the assessment, field data were collected with an acoustic Doppler current profiler and a global positioning system for hydrodynamic model generation, calibration, and validation using the software TELEMAC-2D. The mean absolute percentage errors of the model in the areas of interest were 14.8% for calibration and 22.9% and 19.4% for validation.

Suggested Citation

  • Kirby, Katelyn & Rennie, Colin D. & Cousineau, Julien & Ferguson, Sean & Nistor, Ioan, 2023. "Impacts of seasonal flow variation on riverine hydrokinetic energy resources and optimal turbine location – Case study on the Rivière Rouge, Québec, Canada," Renewable Energy, Elsevier, vol. 210(C), pages 364-374.
  • Handle: RePEc:eee:renene:v:210:y:2023:i:c:p:364-374
    DOI: 10.1016/j.renene.2023.04.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123005177
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petrie, John & Diplas, Panayiotis & Gutierrez, Marte & Nam, Soonkie, 2014. "Characterizing the mean flow field in rivers for resource and environmental impact assessments of hydrokinetic energy generation sites," Renewable Energy, Elsevier, vol. 69(C), pages 393-401.
    2. Nag, Aditya Kumar & Sarkar, Shibayan, 2021. "Techno-economic analysis of a micro-hydropower plant consists of hydrokinetic turbines arranged in different array formations for rural power supply," Renewable Energy, Elsevier, vol. 179(C), pages 475-487.
    3. d’Auteuil, Samuel & Birjandi, Amir & Bibeau, Eric & Jordan, Scott & Soviak, Jody & Friesen, David, 2019. "Riverine hydrokinetic resource assessment using low cost winter imagery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 293-300.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sedighkia, Mahdi & Abdoli, Asghar, 2023. "An optimization approach for managing environmental impacts of generating hydropower on fish biodiversity," Renewable Energy, Elsevier, vol. 218(C).
    2. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    3. Holanda, Patrícia da Silva & Blanco, Claudio José Cavalcante & Mesquita, André Luiz Amarante & Brasil Junior, Antônio César Pinho & de Figueiredo, Nelio Moura & Macêdo, Emanuel Negrão & Secretan, Yves, 2017. "Assessment of hydrokinetic energy resources downstream of hydropower plants," Renewable Energy, Elsevier, vol. 101(C), pages 1203-1214.
    4. Tianyu Yang & Bin Wang & Peng Chen, 2020. "Design of a Finite-Time Terminal Sliding Mode Controller for a Nonlinear Hydro-Turbine Governing System," Energies, MDPI, vol. 13(3), pages 1-14, February.
    5. Fouz, D.M. & Carballo, R. & Ramos, V. & Iglesias, G., 2019. "Hydrokinetic energy exploitation under combined river and tidal flow," Renewable Energy, Elsevier, vol. 143(C), pages 558-568.
    6. Iglesias, I. & Bio, A. & Bastos, L. & Avilez-Valente, P., 2021. "Estuarine hydrodynamic patterns and hydrokinetic energy production: The Douro estuary case study," Energy, Elsevier, vol. 222(C).
    7. Rengma, Thochi Seb & Subbarao, P.M.V., 2022. "Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network," Renewable Energy, Elsevier, vol. 200(C), pages 658-673.
    8. Luca Cacciali & Lorenzo Battisti & Sergio Dell’Anna, 2023. "Multi-Array Design for Hydrokinetic Turbines in Hydropower Canals," Energies, MDPI, vol. 16(5), pages 1-26, February.
    9. Boroomandnia, Arezoo & Rismanchi, Behzad & Wu, Wenyan, 2022. "A review of micro hydro systems in urban areas: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    11. Kumar, Rakesh & Sarkar, Shibayan, 2022. "Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:210:y:2023:i:c:p:364-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.