IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v179y2021icp475-487.html
   My bibliography  Save this article

Techno-economic analysis of a micro-hydropower plant consists of hydrokinetic turbines arranged in different array formations for rural power supply

Author

Listed:
  • Nag, Aditya Kumar
  • Sarkar, Shibayan

Abstract

This paper deals with the performance and techno-economic analysis of micro-hydropower plant consists of array of Helical Savonius hydrokinetic turbines (HSHKT). In this study, an optimal inter-turbine distance (L) and two specific HSHKT array formations, i.e., triangular and staggered are considered on a 69 m river stretch corresponding to a study area of 2.36 km2. River free stream velocity ranges between 0.88 and 1.88 m/s. Sensitivity analyses were carried out in HOMER software based on the free stream velocity and electric load to investigate the feasibility of the standalone hydrokinetic turbine renewable energy systems (RES) suitable for the rural community. Further, optimization analyses were performed considering minimum total net present cost (TNPC) and cost of energy (COE). The optimum RES consists of triangular formation of 24 numbers of HSHKTs, with 524 kWh/d electrical load, 187 numbers of battery and converter of 46 kW, having COE of Rs 8.22/kWh, TNPC of Rs 14.5 × 106 and electric production of 399.5 MWh/yr. TNPC and COE of triangular formation are 4.83% and 9.12% less than staggered formation, whereas electric production of the triangular is 4.99% more than the staggered formation. Thus, based on economic and energy indicators triangular array formation is considered as best for RES configuration.

Suggested Citation

  • Nag, Aditya Kumar & Sarkar, Shibayan, 2021. "Techno-economic analysis of a micro-hydropower plant consists of hydrokinetic turbines arranged in different array formations for rural power supply," Renewable Energy, Elsevier, vol. 179(C), pages 475-487.
  • Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:475-487
    DOI: 10.1016/j.renene.2021.07.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121010727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.07.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
    2. Malki, Rami & Masters, Ian & Williams, Alison J. & Nick Croft, T., 2014. "Planning tidal stream turbine array layouts using a coupled blade element momentum – computational fluid dynamics model," Renewable Energy, Elsevier, vol. 63(C), pages 46-54.
    3. John, Bony & Thomas, Rony N. & Varghese, James, 2020. "Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition," Renewable Energy, Elsevier, vol. 149(C), pages 361-373.
    4. Odou, Oluwarotimi Delano Thierry & Bhandari, Ramchandra & Adamou, Rabani, 2020. "Hybrid off-grid renewable power system for sustainable rural electrification in Benin," Renewable Energy, Elsevier, vol. 145(C), pages 1266-1279.
    5. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2010. "Integrated renewable energy systems for off grid rural electrification of remote area," Renewable Energy, Elsevier, vol. 35(6), pages 1342-1349.
    6. Chowdhury, Tamal & Chowdhury, Hemal & Miskat, Monirul Islam & Chowdhury, Piyal & Sait, Sadiq M. & Thirugnanasambandam, M. & Saidur, R., 2020. "Developing and evaluating a stand-alone hybrid energy system for Rohingya refugee community in Bangladesh," Energy, Elsevier, vol. 191(C).
    7. Rajanna, S. & Saini, R.P., 2016. "Development of optimal integrated renewable energy model with battery storage for a remote Indian area," Energy, Elsevier, vol. 111(C), pages 803-817.
    8. John, Bony & Varghese, James, 2021. "Sizing and techno-economic analysis of hydrokinetic turbine based standalone hybrid energy systems," Energy, Elsevier, vol. 221(C).
    9. Tavares Dias do Rio Vaz, Déborah Aline & Vaz, Jerson Rogério Pinheiro & Mesquita, André Luiz Amarante & Pinho, João Tavares & Pinho Brasil Junior, Antonio Cesar, 2013. "Optimum aerodynamic design for wind turbine blade with a Rankine vortex wake," Renewable Energy, Elsevier, vol. 55(C), pages 296-304.
    10. Ali Saleh Aziz & Mohammad Faridun Naim Tajuddin & Mohd Rafi Adzman & Makbul A. M. Ramli & Saad Mekhilef, 2019. "Energy Management and Optimization of a PV/Diesel/Battery Hybrid Energy System Using a Combined Dispatch Strategy," Sustainability, MDPI, vol. 11(3), pages 1-26, January.
    11. Sutherland, Duncan & Ordonez-Sanchez, Stephanie & Belmont, Michael R. & Moon, Ian & Steynor, Jeffrey & Davey, Thomas & Bruce, Tom, 2018. "Experimental optimisation of power for large arrays of cross-flow tidal turbines," Renewable Energy, Elsevier, vol. 116(PA), pages 685-696.
    12. Kumar, Dinesh & Sarkar, Shibayan, 2017. "Modeling of flow-induced stress on helical Savonius hydrokinetic turbine with the effect of augmentation technique at different operating conditions," Renewable Energy, Elsevier, vol. 111(C), pages 740-748.
    13. Ghaffari, Abolfazl & Askarzadeh, Alireza, 2020. "Design optimization of a hybrid system subject to reliability level and renewable energy penetration," Energy, Elsevier, vol. 193(C).
    14. Kamoji, M.A. & Kedare, S.B. & Prabhu, S.V., 2009. "Experimental investigations on single stage modified Savonius rotor," Applied Energy, Elsevier, vol. 86(7-8), pages 1064-1073, July.
    15. Nag, Aditya Kumar & Sarkar, Shibayan, 2018. "Modeling of hybrid energy system for futuristic energy demand of an Indian rural area and their optimal and sensitivity analysis," Renewable Energy, Elsevier, vol. 118(C), pages 477-488.
    16. Chauhan, Anurag & Saini, R.P., 2016. "Techno-economic feasibility study on Integrated Renewable Energy System for an isolated community of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 388-405.
    17. Das, Barun K. & Zaman, Forhad, 2019. "Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection," Energy, Elsevier, vol. 169(C), pages 263-276.
    18. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    19. Chauhan, Anurag & Saini, R.P., 2016. "Techno-economic optimization based approach for energy management of a stand-alone integrated renewable energy system for remote areas of India," Energy, Elsevier, vol. 94(C), pages 138-156.
    20. Talukdar, Parag K. & Kulkarni, Vinayak & Saha, Ujjwal K., 2018. "Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation," Renewable Energy, Elsevier, vol. 127(C), pages 158-167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirby, Katelyn & Rennie, Colin D. & Cousineau, Julien & Ferguson, Sean & Nistor, Ioan, 2023. "Impacts of seasonal flow variation on riverine hydrokinetic energy resources and optimal turbine location – Case study on the Rivière Rouge, Québec, Canada," Renewable Energy, Elsevier, vol. 210(C), pages 364-374.
    2. Boroomandnia, Arezoo & Rismanchi, Behzad & Wu, Wenyan, 2022. "A review of micro hydro systems in urban areas: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Rengma, Thochi Seb & Subbarao, P.M.V., 2022. "Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network," Renewable Energy, Elsevier, vol. 200(C), pages 658-673.
    4. Kumar, Rakesh & Sarkar, Shibayan, 2022. "Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Hussain, Moaid K. & Adzman, Mohd Rafi & Ghazali, Nur Hafizah & Ramli, Makbul A.M. & Khalil Zidane, Tekai Eddine, 2022. "A new optimization strategy for wind/diesel/battery hybrid energy system," Energy, Elsevier, vol. 239(PE).
    2. Das, Pronob & Das, Barun K. & Rahman, Mushfiqur & Hassan, Rakibul, 2022. "Evaluating the prospect of utilizing excess energy and creating employments from a hybrid energy system meeting electricity and freshwater demands using multi-objective evolutionary algorithms," Energy, Elsevier, vol. 238(PB).
    3. Das, Barun K. & Tushar, Mohammad Shahed H.K. & Zaman, Forhad, 2021. "Techno-economic feasibility and size optimisation of an off-grid hybrid system for supplying electricity and thermal loads," Energy, Elsevier, vol. 215(PA).
    4. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    5. Fazlur Rashid & Md. Emdadul Hoque & Muhammad Aziz & Talukdar Nazmus Sakib & Md. Tariqul Islam & Raihan Moker Robin, 2021. "Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh," Energies, MDPI, vol. 14(18), pages 1-24, September.
    6. Kumar, Pankaj & Pal, Nitai & Sharma, Himanshu, 2022. "Optimization and techno-economic analysis of a solar photo-voltaic/biomass/diesel/battery hybrid off-grid power generation system for rural remote electrification in eastern India," Energy, Elsevier, vol. 247(C).
    7. Chauhan, Anurag & Saini, R.P., 2016. "Discrete harmony search based size optimization of Integrated Renewable Energy System for remote rural areas of Uttarakhand state in India," Renewable Energy, Elsevier, vol. 94(C), pages 587-604.
    8. Das, Barun K. & Hasan, Mahmudul & Das, Pronob, 2021. "Impact of storage technologies, temporal resolution, and PV tracking on stand-alone hybrid renewable energy for an Australian remote area application," Renewable Energy, Elsevier, vol. 173(C), pages 362-380.
    9. Islam, M.S. & Das, Barun K. & Das, Pronob & Rahaman, Md Habibur, 2021. "Techno-economic optimization of a zero emission energy system for a coastal community in Newfoundland, Canada," Energy, Elsevier, vol. 220(C).
    10. Baruah, Abhinandan & Basu, Mousumi & Amuley, Deeshank, 2021. "Modeling of an autonomous hybrid renewable energy system for electrification of a township: A case study for Sikkim, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Chauhan, Anurag & Saini, R.P., 2017. "Size optimization and demand response of a stand-alone integrated renewable energy system," Energy, Elsevier, vol. 124(C), pages 59-73.
    12. Rajanna, S. & Saini, R.P., 2016. "Employing demand side management for selection of suitable scenario-wise isolated integrated renewal energy models in an Indian remote rural area," Renewable Energy, Elsevier, vol. 99(C), pages 1161-1180.
    13. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
    14. Kumar, Rakesh & Sarkar, Shibayan, 2022. "Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    15. Li, Jinze & Liu, Pei & Li, Zheng, 2020. "Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China," Energy, Elsevier, vol. 208(C).
    16. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    17. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Azmi, Azralmukmin & Ramli, Makbul A.M., 2019. "Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq," Renewable Energy, Elsevier, vol. 138(C), pages 775-792.
    18. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    19. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    20. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:179:y:2021:i:c:p:475-487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.