IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v207y2023icp321-347.html
   My bibliography  Save this article

Experimental development of a lithium bromide absorption power cycle

Author

Listed:
  • Novotny, Vaclav
  • Spale, Jan
  • Pavlicko, Jan
  • Szucs, David J.
  • Kolovratnik, Michal

Abstract

Absorption cycles have been proposed not only for cooling but also for power generation, benefiting from temperature glide in heat exchangers, lowering exergy destruction. They can effectively utilise low-temperature solar, geothermal or waste heat. Apart from water-ammonia mixture, alternative working fluids may provide further advantages. Specifically attractive is an aqueous solution of salts such as lithium bromide (LiBr), also known from absorption cooling. Previous theoretical works found thermodynamic benefits of this concept mainly for heat sources around 100 °C and technical feasibility even for kW scale systems, but experimental works were limited.

Suggested Citation

  • Novotny, Vaclav & Spale, Jan & Pavlicko, Jan & Szucs, David J. & Kolovratnik, Michal, 2023. "Experimental development of a lithium bromide absorption power cycle," Renewable Energy, Elsevier, vol. 207(C), pages 321-347.
  • Handle: RePEc:eee:renene:v:207:y:2023:i:c:p:321-347
    DOI: 10.1016/j.renene.2023.02.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123002744
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.02.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bamorovat Abadi, Gholamreza & Yun, Eunkoo & Kim, Kyung Chun, 2015. "Experimental study of a 1 kw organic Rankine cycle with a zeotropic mixture of R245fa/R134a," Energy, Elsevier, vol. 93(P2), pages 2363-2373.
    2. Jonathan Ibarra-Bahena & Rosenberg J. Romero, 2014. "Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review," Energies, MDPI, vol. 7(2), pages 1-16, February.
    3. Jung, Hyung-Chul & Taylor, Leighton & Krumdieck, Susan, 2015. "An experimental and modelling study of a 1 kW organic Rankine cycle unit with mixture working fluid," Energy, Elsevier, vol. 81(C), pages 601-614.
    4. Theresa Weith & Florian Heberle & Markus Preißinger & Dieter Brüggemann, 2014. "Performance of Siloxane Mixtures in a High-Temperature Organic Rankine Cycle Considering the Heat Transfer Characteristics during Evaporation," Energies, MDPI, vol. 7(9), pages 1-18, August.
    5. Ajimotokan, H.A. & Sher, I., 2015. "Thermodynamic performance simulation and design optimisation of trilateral-cycle engines for waste heat recovery-to-power generation," Applied Energy, Elsevier, vol. 154(C), pages 26-34.
    6. Pang, Kuo-Cheng & Chen, Shih-Chi & Hung, Tzu-Chen & Feng, Yong-Qiang & Yang, Shih-Cheng & Wong, Kin-Wah & Lin, Jaw-Ren, 2017. "Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat," Energy, Elsevier, vol. 133(C), pages 636-651.
    7. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    8. Mascuch, Jakub & Novotny, Vaclav & Vodicka, Vaclav & Spale, Jan & Zeleny, Zbynek, 2020. "Experimental development of a kilowatt-scale biomass fired micro – CHP unit based on ORC with rotary vane expander," Renewable Energy, Elsevier, vol. 147(P3), pages 2882-2895.
    9. Vaclav Novotny & David J. Szucs & Jan Špale & Hung-Yin Tsai & Michal Kolovratnik, 2021. "Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration," Energies, MDPI, vol. 14(12), pages 1-26, June.
    10. Weiß, A.P. & Popp, T. & Zinn, G. & Preißinger, M. & Brüggemann, D., 2019. "A micro-turbine-generator-construction-kit (MTG-c-kit) for small-scale waste heat recovery ORC-Plants," Energy, Elsevier, vol. 181(C), pages 51-55.
    11. Nikolaisen, Monika & Andresen, Trond, 2021. "System impact of heat exchanger pressure loss in ORCs for smelter off-gas waste heat recovery," Energy, Elsevier, vol. 215(PB).
    12. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sui, Yunren & Lin, Haosheng & Ding, Zhixiong & Li, Fuxiang & Sui, Zengguang & Wu, Wei, 2024. "Compact, efficient, and affordable absorption Carnot battery for long-term renewable energy storage," Applied Energy, Elsevier, vol. 357(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Sun, Hongchuang & Qin, Jiang & Hung, Tzu-Chen & Huang, Hongyan & Yan, Peigang & Lin, Chih-Hung, 2019. "Effect of flow losses in heat exchangers on the performance of organic Rankine cycle," Energy, Elsevier, vol. 172(C), pages 391-400.
    3. Wang, Zhiqi & Zhao, Yabin & Xia, Xiaoxia & Pan, Huihui & Zhang, Sifeng & Liu, Zhipeng, 2023. "Experimental evaluation of organic Rankine cycle using zeotropic mixture under different operation conditions," Energy, Elsevier, vol. 264(C).
    4. Liu, Liuchen & Zhu, Tong & Wang, Tiantian & Gao, Naiping, 2019. "Experimental investigation on the effect of working fluid charge in a small-scale Organic Rankine Cycle under off-design conditions," Energy, Elsevier, vol. 174(C), pages 664-677.
    5. Sun, Xiaocun & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Zhang, Yonghao & Yao, Yu & Sun, Rui & Shu, Gequn, 2022. "Analysis of an ideal composition tunable combined cooling and power cycle with CO2-based mixture," Energy, Elsevier, vol. 255(C).
    6. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    7. Vaclav Novotny & David J. Szucs & Jan Špale & Hung-Yin Tsai & Michal Kolovratnik, 2021. "Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration," Energies, MDPI, vol. 14(12), pages 1-26, June.
    8. Carraro, Gianluca & Bori, Viola & Lazzaretto, Andrea & Toniato, Giuseppe & Danieli, Piero, 2020. "Experimental investigation of an innovative biomass-fired micro-ORC system for cogeneration applications," Renewable Energy, Elsevier, vol. 161(C), pages 1226-1243.
    9. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    10. Woodland, Brandon J. & Ziviani, Davide & Braun, James E. & Groll, Eckhard A., 2020. "Considerations on alternative organic Rankine Cycle congurations for low-grade waste heat recovery," Energy, Elsevier, vol. 193(C).
    11. Sun, Hongchuang & Qin, Jiang & Hung, Tzu-Chen & Lin, Chih-Hung & Lin, Yi-Fan, 2018. "Performance comparison of organic Rankine cycle with expansion from superheated zone or two-phase zone based on temperature utilization rate of heat source," Energy, Elsevier, vol. 149(C), pages 566-576.
    12. Naseri, Ali & Norris, Stuart & Subiantoro, Alison, 2020. "Experimental investigation of a prototype semi-dry revolving vane expander: Design challenges and performance criteria," Energy, Elsevier, vol. 205(C).
    13. Wang, Zhiqi & Pan, Huihui & Xia, Xiaoxia & Xie, Baoqi & Peng, Deqi & Yang, Huya, 2022. "Experimental investigation on steady and dynamic performance of organic Rankine cycle with R245fa/R141b under different cooling and expander speed conditions," Energy, Elsevier, vol. 241(C).
    14. Li, Jing & Gao, Guangtao & Li, Pengcheng & Pei, Gang & Huang, Hulin & Su, Yuehong & Ji, Jie, 2018. "Experimental study of organic Rankine cycle in the presence of non-condensable gases," Energy, Elsevier, vol. 142(C), pages 739-753.
    15. Spale, Jan & Vodicka, Vaclav & Zeleny, Zbynek & Pavlicko, Jan & Mascuch, Jakub & Novotny, Vaclav, 2022. "Scaling up a woodchip-fired containerized CHP ORC unit toward commercialization," Renewable Energy, Elsevier, vol. 199(C), pages 1226-1236.
    16. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    17. Guillermo Valencia Ochoa & Javier Cárdenas Gutierrez & Jorge Duarte Forero, 2020. "Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine," Resources, MDPI, vol. 9(1), pages 1-23, January.
    18. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    19. Xi, Huan & Zhang, Honghu & He, Ya-Ling & Huang, Zuohua, 2019. "Sensitivity analysis of operation parameters on the system performance of organic rankine cycle system using orthogonal experiment," Energy, Elsevier, vol. 172(C), pages 435-442.
    20. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Wang, Chao & Chen, Ying, 2022. "Superstructure-based mixed-integer nonlinear programming framework for hybrid heat sources driven organic Rankine cycle optimization," Applied Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:207:y:2023:i:c:p:321-347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.