IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v192y2022icp716-730.html
   My bibliography  Save this article

A numerical evaluation of the bifacial concentrated PV-STEG system cooled by mini-channel heat sink

Author

Listed:
  • Gao, Yuanzhi
  • Wang, Changling
  • Wu, Dongxu
  • Dai, Zhaofeng
  • Chen, Bo
  • Zhang, Xiaosong

Abstract

The operating temperature of the novel bifacial concentrated photovoltaic-solar thermoelectric generator (PV-STEG) system is a decisive factor in determining the working performance. In this study, a mini-channel heat sink with superior heat transfer characteristics is selected to preserve the lower operating temperature of the PV cell and create sufficient temperature differences for the STEG unit. To settle the related problems, a three-dimensional numerical model is developed. Moreover, the conventional PV system is used as a reference configuration for comparative evaluation. The impact of adopting various flow channel shapes, input solar irradiance, Reynolds number, and inlet temperature is thoroughly explored. The obtained results suggested that the square mini-channel heat sink is more suitable. Furthermore, to maximize the power yield of the system, stronger solar irradiance, higher Reynolds number, and lower inlet temperature is recommended. Besides, the influence of employing diverse nanofluids is also analyzed. The outcomes indicated that the average PV temperature and power output could be significantly reduced/improved by utilizing nanofluids. Specifically, the total efficiency rose by 14.59% compared to the PV alone and PV-STEG systems using single-walled carbon nanotube (SWCNT) nanofluid. Besides, an enhancement of 23.21% in exergy efficiency was obtained compared to the sole PV system.

Suggested Citation

  • Gao, Yuanzhi & Wang, Changling & Wu, Dongxu & Dai, Zhaofeng & Chen, Bo & Zhang, Xiaosong, 2022. "A numerical evaluation of the bifacial concentrated PV-STEG system cooled by mini-channel heat sink," Renewable Energy, Elsevier, vol. 192(C), pages 716-730.
  • Handle: RePEc:eee:renene:v:192:y:2022:i:c:p:716-730
    DOI: 10.1016/j.renene.2022.04.153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122006218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Xin & Ji, Jie & Song, Zhiying, 2021. "Performance comparison of two micro-channel heat pipe LFPV/T systems plus thermoelectric generators with and without aerogel glazing," Energy, Elsevier, vol. 229(C).
    2. Gao, Yuanzhi & Hu, Guohao & Zhang, Yuzhuo & Zhang, Xiaosong, 2022. "An experimental study of a hybrid photovoltaic thermal system based on ethanol phase change self-circulation technology: Energy and exergy analysis," Energy, Elsevier, vol. 238(PA).
    3. Wang, Chen & Zhang, Xiaosong & You, Zhanping & Zhang, Muxing & Huang, Shifang & She, Xiaohui, 2021. "The effect of air purification on liquid air energy storage – An analysis from molecular to systematic modelling," Applied Energy, Elsevier, vol. 300(C).
    4. Atouei, S. Ahmadi & Rezania, A. & Ranjbar, A.A. & Rosendahl, L.A., 2018. "Protection and thermal management of thermoelectric generator system using phase change materials: An experimental investigation," Energy, Elsevier, vol. 156(C), pages 311-318.
    5. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    6. Rejeb, Oussama & Shittu, Samson & Ghenai, Chaouki & Li, Guiqiang & Zhao, Xudong & Bettayeb, Maamar, 2020. "Optimization and performance analysis of a solar concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system," Renewable Energy, Elsevier, vol. 152(C), pages 1342-1353.
    7. Yin, Ershuai & Li, Qiang & Li, Dianhong & Xuan, Yimin, 2019. "Experimental investigation on effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials," Energy, Elsevier, vol. 169(C), pages 172-185.
    8. Xiao, Jinsheng & Yang, Tianqi & Li, Peng & Zhai, Pengcheng & Zhang, Qingjie, 2012. "Thermal design and management for performance optimization of solar thermoelectric generator," Applied Energy, Elsevier, vol. 93(C), pages 33-38.
    9. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2020. "Feasibility analysis of a tandem photovoltaic-thermoelectric hybrid system under solar concentration," Renewable Energy, Elsevier, vol. 162(C), pages 1828-1841.
    10. Ko, Jinyoung & Jeong, Jae-Weon, 2021. "Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    12. Li, Guiqiang & Shittu, Samson & Ma, Xiaoli & Zhao, Xudong, 2019. "Comparative analysis of thermoelectric elements optimum geometry between photovoltaic-thermoelectric and solar thermoelectric," Energy, Elsevier, vol. 171(C), pages 599-610.
    13. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2019. "Series of detail comparison and optimization of thermoelectric element geometry considering the PV effect," Renewable Energy, Elsevier, vol. 130(C), pages 930-942.
    14. Mahmoudinezhad, S. & Cotfas, D.T. & Cotfas, P.A. & Skjølstrup, Enok J.H. & Pedersen, K. & Rosendahl, L. & Rezania, A., 2022. "Experimental investigation on spectrum beam splitting photovoltaic–thermoelectric generator under moderate solar concentrations," Energy, Elsevier, vol. 238(PC).
    15. Zhu, Wei & Deng, Yuan & Wang, Yao & Shen, Shengfei & Gulfam, Raza, 2016. "High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management," Energy, Elsevier, vol. 100(C), pages 91-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Yuanzhi & Chen, Bo & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Zhang, Xiaosong, 2022. "Comparative study of various solar power generation systems integrated with nanofluid-flat heat pipe," Applied Energy, Elsevier, vol. 327(C).
    2. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    3. Zhou, Haojie & Tian, Tong & Wang, Xinyue & Li, Ji, 2023. "Combining looped heat pipe and thermoelectric generator module to pursue data center servers with possible power usage effectiveness less than 1," Applied Energy, Elsevier, vol. 332(C).
    4. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Zhu, Liutao & Zhang, Jili & Xu, Guoying & Zhang, Xiaosong, 2023. "A passive evaporative cooling strategy to enhance the electricity production of hybrid PV-STEG system," Applied Energy, Elsevier, vol. 349(C).
    5. Gao, Yuanzhi & Dai, Zhaofeng & Wu, Dongxu & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2022. "Transient performance assessment of a hybrid PV-TEG system integrated with PCM under non-uniform radiation conditions: A numerical investigation," Renewable Energy, Elsevier, vol. 198(C), pages 352-366.
    6. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying & Yao, Tingting, 2023. "Performance characterization of a PV/T system employing micro-channel heat pipes and thermoelectric generators: An experimental and numerical study," Energy, Elsevier, vol. 264(C).
    7. Kouravand, Amir & Kasaeian, Alibakhsh & Pourfayaz, Fathollah & Vaziri Rad, Mohammad Amin, 2022. "Evaluation of a nanofluid-based concentrating photovoltaic thermal system integrated with finned PCM heatsink: An experimental study," Renewable Energy, Elsevier, vol. 201(P1), pages 1010-1025.
    8. Warsama, Aziza Idriss & Selimli, Selcuk, 2024. "Effect of dust deposition density and particle size on the energetic and exergetic performance of photovoltaic modules: An experimental study," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yuanzhi & Dai, Zhaofeng & Wu, Dongxu & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2022. "Transient performance assessment of a hybrid PV-TEG system integrated with PCM under non-uniform radiation conditions: A numerical investigation," Renewable Energy, Elsevier, vol. 198(C), pages 352-366.
    2. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
    3. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    4. He, Y. & Tao, Y.B. & Zhao, C.Y. & Yu, X.K., 2022. "Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions," Renewable Energy, Elsevier, vol. 200(C), pages 320-333.
    5. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
    6. Yin, Ershuai & Li, Qiang, 2023. "High-efficiency dynamic lossless coupling of a spectrum splitting photovoltaic-thermoelectric system," Energy, Elsevier, vol. 282(C).
    7. Li, Guiqiang & Shittu, Samson & zhou, Kai & Zhao, Xudong & Ma, Xiaoli, 2019. "Preliminary experiment on a novel photovoltaic-thermoelectric system in summer," Energy, Elsevier, vol. 188(C).
    8. Liang, Tao & Fu, Tong & Hu, Cong & Chen, Xiaohang & Su, Shanhe & Chen, Jincan, 2021. "Optimum matching of photovoltaic–thermophotovoltaic cells efficiently utilizing full-spectrum solar energy," Renewable Energy, Elsevier, vol. 173(C), pages 942-952.
    9. Cui, Y.J. & Wang, B.L. & Wang, K.F. & Wang, G.G. & Zhang, A.B., 2022. "An analytical model to evaluate the fatigue crack effects on the hybrid photovoltaic-thermoelectric device," Renewable Energy, Elsevier, vol. 182(C), pages 923-933.
    10. Ge, Minghui & Zhao, Yuntong & Li, Yanzhe & He, Wei & Xie, Liyao & Zhao, Yulong, 2022. "Structural optimization of thermoelectric modules in a concentration photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 244(PB).
    11. Liu, Junwei & Tang, Huajie & Zhang, Debao & Jiao, Shifei & Zhou, Zhihua & Zhang, Zhuofen & Ling, Jihong & Zuo, Jian, 2020. "Performance evaluation of the hybrid photovoltaic-thermoelectric system with light and heat management," Energy, Elsevier, vol. 211(C).
    12. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    13. Gao, Yuanzhi & Chen, Bo & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Zhang, Xiaosong, 2022. "Comparative study of various solar power generation systems integrated with nanofluid-flat heat pipe," Applied Energy, Elsevier, vol. 327(C).
    14. Yin, Ershuai & Li, Qiang, 2022. "Achieving extensive lossless coupling of photovoltaic and thermoelectric devices through parallel connection," Renewable Energy, Elsevier, vol. 193(C), pages 565-575.
    15. Shittu, Samson & Li, Guiqiang & Tang, Xin & Zhao, Xudong & Ma, Xiaoli & Badiei, Ali, 2020. "Analysis of thermoelectric geometry in a concentrated photovoltaic-thermoelectric under varying weather conditions," Energy, Elsevier, vol. 202(C).
    16. Hong, Bing-Hua & Huang, Xiao-Yan & He, Jian-Wei & Cai, Yang & Wang, Wei-Wei & Zhao, Fu-Yun, 2023. "Round-the-clock performance of solar thermoelectric wall with phase change material in subtropical climate: Critical analysis and parametric investigations," Energy, Elsevier, vol. 272(C).
    17. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Narasingamurthi, Kulasekharan & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Saidur, R., 2022. "Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough con," Applied Energy, Elsevier, vol. 320(C).
    18. Lorenzi, Bruno & Mariani, Paolo & Reale, Andrea & Di Carlo, Aldo & Chen, Gang & Narducci, Dario, 2021. "Practical development of efficient thermoelectric – Photovoltaic hybrid systems based on wide-gap solar cells," Applied Energy, Elsevier, vol. 300(C).
    19. Badr, Farouk & Radwan, Ali & Ahmed, Mahmoud & Hamed, Ahmed M., 2022. "An experimental study of the concentrator photovoltaic/thermoelectric generator performance using different passive cooling methods," Renewable Energy, Elsevier, vol. 185(C), pages 1078-1094.
    20. Rejeb, Oussama & Shittu, Samson & Ghenai, Chaouki & Li, Guiqiang & Zhao, Xudong & Bettayeb, Maamar, 2020. "Optimization and performance analysis of a solar concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system," Renewable Energy, Elsevier, vol. 152(C), pages 1342-1353.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:192:y:2022:i:c:p:716-730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.