IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v214y2021ics0360544220320156.html
   My bibliography  Save this article

Behaviors of two semi-passive oscillating hydrofoils with a tandem configuration

Author

Listed:
  • Ma, Penglei
  • Wang, Yong
  • Xie, Yudong
  • Liu, Guijie

Abstract

Two hydrofoils with a tandem spatial configuration can share the same flow window. The wake vortex interaction and blockage effect have noticeable impacts on the response of two hydrofoils for a semi-passive system. In this study, the responses of two oscillating hydrofoils with a tandem arrangement are examined using a numerical approach. The results indicate that the downstream hydrofoil has an inferior energy harvesting performance because it operates in the upstream hydrofoil wake. Several special cases were observed. As a result of a negative interaction in the wake vortices, (i) two hydrofoils were shown to have different heaving equilibrium positions and thus no longer share the flow window; and (ii) the downstream hydrofoil was demonstrated to have a larger heaving amplitude but a lower energy harvesting performance. At a very high oscillation frequency, the downstream hydrofoil tends to incur an irregular response owing to the intense vortex formation and shedding, as well as a constant interaction of the wake vortices. The downstream hydrofoil achieves an unexpectedly better energy harvesting performance due to a favorable interaction of the wake vortices. However, the entire system can’t achieve high efficiency due to the poor energy harvesting performance of the upstream hydrofoil. When two semi-passive oscillating hydrofoils have a tandem configuration, negative wake vortex interactions should be avoided instead of seeking a favorable interaction.

Suggested Citation

  • Ma, Penglei & Wang, Yong & Xie, Yudong & Liu, Guijie, 2021. "Behaviors of two semi-passive oscillating hydrofoils with a tandem configuration," Energy, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320156
    DOI: 10.1016/j.energy.2020.118908
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220320156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2020. "Energy-harvesting performance of a coupled-pitching hydrofoil under the semi-passive mode," Applied Energy, Elsevier, vol. 267(C).
    2. Karbasian, H.R. & Esfahani, J.A. & Barati, E., 2015. "Simulation of power extraction from tidal currents by flapping foil hydrokinetic turbines in tandem formation," Renewable Energy, Elsevier, vol. 81(C), pages 816-824.
    3. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2019. "Performance evaluation and enhancement of a semi-activated flapping hydrofoil in shear flows," Energy, Elsevier, vol. 189(C).
    4. Ma, Penglei & Wang, Yong & Xie, Yudong & Zhang, Jianhua, 2018. "Analysis of a hydraulic coupling system for dual oscillating foils with a parallel configuration," Energy, Elsevier, vol. 143(C), pages 273-283.
    5. Ma, Penglei & Yang, Zhihong & Wang, Yong & Liu, Haibin & Xie, Yudong, 2017. "Energy extraction and hydrodynamic behavior analysis by an oscillating hydrofoil device," Renewable Energy, Elsevier, vol. 113(C), pages 648-659.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yubing & Wang, Qixian & Han, Jiazhen & Xie, Yudong, 2023. "Effects of unsteady stream on hydrodynamic behavior of flexible hydrofoil in semi-passive mode," Renewable Energy, Elsevier, vol. 206(C), pages 451-465.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhen & Qu, Hengliang & Song, Xinyu & Chen, Zhengshou & Ni, Heqiang, 2023. "Energy-harvesting performance of tandem coupled-pitching hydrofoils under the semi-activated mode: An experimental study," Energy, Elsevier, vol. 279(C).
    2. Zhang, Yubing & Wang, Qixian & Han, Jiazhen & Xie, Yudong, 2023. "Effects of unsteady stream on hydrodynamic behavior of flexible hydrofoil in semi-passive mode," Renewable Energy, Elsevier, vol. 206(C), pages 451-465.
    3. Wu, Jie & Shen, Meng & Jiang, Lan, 2020. "Role of synthetic jet control in energy harvesting capability of a semi-active flapping airfoil," Energy, Elsevier, vol. 208(C).
    4. Ma, Penglei & Wang, Yong & Xie, Yudong & Huo, Zhipu, 2018. "Numerical analysis of a tidal current generator with dual flapping wings," Energy, Elsevier, vol. 155(C), pages 1077-1089.
    5. Ma, Penglei & Wang, Yong & Xie, Yudong & Zhang, Jianhua, 2018. "Analysis of a hydraulic coupling system for dual oscillating foils with a parallel configuration," Energy, Elsevier, vol. 143(C), pages 273-283.
    6. Arun Raj Shanmugam & Ki Sun Park & Chang Hyun Sohn, 2023. "Comparison of the Power Extraction Performance of an Oscillating Hydrofoil Turbine with Different Deflector Designs," Energies, MDPI, vol. 16(8), pages 1-29, April.
    7. Sun, Guang & Wang, Yong & Xie, Yudong & Lv, Kai & Sheng, Ruoyu, 2021. "Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil," Energy, Elsevier, vol. 225(C).
    8. Liu, Zhen & Qu, Hengliang & Zhang, Guoliang, 2020. "Experimental and numerical investigations of a coupled-pitching hydrofoil under the fully-activated mode," Renewable Energy, Elsevier, vol. 155(C), pages 432-446.
    9. Zhang, Yubing & Wang, Yong & Xie, Yudong & Sun, Guang & Han, Jiazhen, 2022. "Effects of flexibility on energy extraction performance of an oscillating hydrofoil under a semi-activated mode," Energy, Elsevier, vol. 242(C).
    10. Ma, Penglei & Liu, Guijie & Wang, Honghui & Wang, Yong & Xie, Yudong, 2021. "Co-simulations of a semi-passive oscillating foil turbine using a hydraulic system," Energy, Elsevier, vol. 217(C).
    11. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2020. "Energy-harvesting performance of a coupled-pitching hydrofoil under the semi-passive mode," Applied Energy, Elsevier, vol. 267(C).
    12. Liu, Zhen & Qu, Hengliang, 2022. "Numerical study on a coupled-pitching flexible hydrofoil under the semi-passive mode," Renewable Energy, Elsevier, vol. 189(C), pages 339-358.
    13. Wang, He & Chen, Zhen & Huang, Jiahai, 2021. "Improvement of vibration frequency and energy efficiency in the uniaxial electro-hydraulic shaking tables for sinusoidal vibration waveform," Energy, Elsevier, vol. 218(C).
    14. Deng, Jian & Wang, Shuhong & Kandel, Prabal & Teng, Lubao, 2022. "Effects of free surface on a flapping-foil based ocean current energy extractor," Renewable Energy, Elsevier, vol. 181(C), pages 933-944.
    15. Li, Yunzhu & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Deep learning based real-time energy extraction system modeling for flapping foil," Energy, Elsevier, vol. 246(C).
    16. Barbarelli, S. & Florio, G. & Amelio, M. & Scornaienchi, N.M., 2018. "Preliminary performance assessment of a novel on-shore system recovering energy from tidal currents," Applied Energy, Elsevier, vol. 224(C), pages 717-730.
    17. Karbasian, H.R. & Esfahani, J.A. & Barati, E., 2016. "The power extraction by flapping foil hydrokinetic turbine in swing arm mode," Renewable Energy, Elsevier, vol. 88(C), pages 130-142.
    18. Wang, Ying & Sun, Xiaojing & Huang, Diangui & Zheng, Zhongquan, 2016. "Numerical investigation on energy extraction of flapping hydrofoils with different series foil shapes," Energy, Elsevier, vol. 112(C), pages 1153-1168.
    19. Si, Yulin & Liu, Xiaodong & Wang, Tao & Feng, Bo & Qian, Peng & Ma, Yong & Zhang, Dahai, 2022. "State-of-the-art review and future trends of development of tidal current energy converters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Xu, Bin & Ma, Qiyu & Huang, Diangui, 2021. "Research on energy harvesting properties of a diffuser-augmented flapping wing," Renewable Energy, Elsevier, vol. 180(C), pages 271-280.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.