IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v203y2023icp601-611.html
   My bibliography  Save this article

Techno-economic analysis of off-grid PV-Diesel power generation system for rural electrification: A case study of Chilubi district in Zambia

Author

Listed:
  • Mulenga, Enock
  • Kabanshi, Alan
  • Mupeta, Henry
  • Ndiaye, Musa
  • Nyirenda, Elvis
  • Mulenga, Kabwe

Abstract

The study explores the techno-economic feasibility and viability of a Photovoltaic-Diesel Hybrid system for rural electrification in sub-Sahara Africa with a case study of Chilubi island, a remote district without access to electricity in the Northern Province of Zambia. Using HOMER (Hybrid Optimization of Multiple Electric Renewables) Pro software, the best and most feasible technical solutions through different hybrid system configurations, combinations and the district's rate of access to electricity were considered based on the least Levelized Cost of Energy (LCoE) and life cycle costs of the project. The results show that operating diesel generators as stand-alone is not economically sustainable and has a high LCoE. Influencing factors include variability in diesel pump prices, high fuel transportation costs, high cost of operation and maintenance, among other factors of concern. 100% photovoltaic (PV) with a battery system gave the lowest LCoE. However, the initial capital cost of solar energy projects in Zambia is relatively high compared to the equivalent diesel-based plants, as shown herein. It explains why diesel power plants are favoured for off-grid settlements. On the hand, the low operational cost and LCoE of PV power plants favour rural districts as they offset the high initial capital costs. Additionally, the continued downward trend in the cost of PV installations per kWp has opened discussions among policymakers and energy planners in Zambia to favour rural electrification with renewable energy-based power generation. This study contributes to this discussion.

Suggested Citation

  • Mulenga, Enock & Kabanshi, Alan & Mupeta, Henry & Ndiaye, Musa & Nyirenda, Elvis & Mulenga, Kabwe, 2023. "Techno-economic analysis of off-grid PV-Diesel power generation system for rural electrification: A case study of Chilubi district in Zambia," Renewable Energy, Elsevier, vol. 203(C), pages 601-611.
  • Handle: RePEc:eee:renene:v:203:y:2023:i:c:p:601-611
    DOI: 10.1016/j.renene.2022.12.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122019085
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.12.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali Saleh Aziz & Mohammad Faridun Naim Tajuddin & Mohd Rafi Adzman & Makbul A. M. Ramli & Saad Mekhilef, 2019. "Energy Management and Optimization of a PV/Diesel/Battery Hybrid Energy System Using a Combined Dispatch Strategy," Sustainability, MDPI, vol. 11(3), pages 1-26, January.
    2. Kadigi, Reuben M.J. & Mdoe, Ntengua S.Y. & Ashimogo, Gasper C. & Morardet, Sylvie, 2008. "Water for irrigation or hydropower generation?--Complex questions regarding water allocation in Tanzania," Agricultural Water Management, Elsevier, vol. 95(8), pages 984-992, August.
    3. Peters, Jörg & Sievert, Maximiliane & Toman, Michael A., 2019. "Rural electrification through mini-grids: Challenges ahead," Energy Policy, Elsevier, vol. 132(C), pages 27-31.
    4. Görtz, J. & Aouad, M. & Wieprecht, S. & Terheiden, K., 2022. "Assessment of pumped hydropower energy storage potential along rivers and shorelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Anton Eberhard & Orvika Rosnes & Maria Shkaratan & Haakon Vennemo, 2011. "Africa's Power Infrastructure : Investment, Integration, Efficiency," World Bank Publications - Books, The World Bank Group, number 2290.
    6. Qoaider, Louy & Steinbrecht, Dieter, 2010. "Photovoltaic systems: A cost competitive option to supply energy to off-grid agricultural communities in arid regions," Applied Energy, Elsevier, vol. 87(2), pages 427-435, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aridi, R. & Yehya, A., 2024. "Anaerobic biodigesters heating sources: Analysis and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Deevela, Niranjan Rao & Singh, Bhim & Kandpal, Tara C., 2023. "Optimization and economic analysis of solar PV based hybrid system for powering Base Transceiver Stations in India," Energy, Elsevier, vol. 283(C).
    3. Iqbal, Rashid & Liu, Yancheng & Zeng, Yuji & Zhang, Qinjin & Zeeshan, Muhammad, 2024. "Comparative study based on techno-economics analysis of different shipboard microgrid systems comprising PV/wind/fuel cell/battery/diesel generator with two battery technologies: A step toward green m," Renewable Energy, Elsevier, vol. 221(C).
    4. Uddin, Moslem & Mo, Huadong & Dong, Daoyi & Elsawah, Sondoss, 2023. "Techno-economic potential of multi-energy community microgrid: The perspective of Australia," Renewable Energy, Elsevier, vol. 219(P2).
    5. El-Maaroufi, Abdellah & Daoudi, Mohammed & Ahl Laamara, Rachid, 2024. "Techno-economic analysis of a PV/WT/biomass off-grid hybrid power system for rural electrification in northern Morocco using HOMER," Renewable Energy, Elsevier, vol. 231(C).
    6. Huda, Adri & Kurniawan, Ian & Purba, Khairul Fahmi & Ichwani, Reisya & Aryansyah, & Fionasari, Richa, 2024. "Techno-economic assessment of residential and farm-based photovoltaic systems," Renewable Energy, Elsevier, vol. 222(C).
    7. Popescu, Daniela & Dragomirescu, Andrei, 2024. "Cost-benefit analysis of a hydro-solar microsystem with Archimedean screw hydro turbine sized for a prosumer building," Renewable Energy, Elsevier, vol. 226(C).
    8. Zhu, Mengshu & Fang, Jiakun & Ai, Xiaomeng & Cui, Shichang & Feng, Yuang & Li, Peng & Zhang, Yihan & Zheng, Yongle & Chen, Zhe & Wen, Jinyu, 2023. "A comprehensive methodology for optimal planning of remote integrated energy systems," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blimpo, Moussa P. & Postepska, Agnieszka & Xu, Yanbin, 2020. "Why is household electricity uptake low in Sub-Saharan Africa?," World Development, Elsevier, vol. 133(C).
    2. Vincenzo Franzitta & Domenico Curto & Davide Rao, 2016. "Energetic Sustainability Using Renewable Energies in the Mediterranean Sea," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    3. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    4. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    5. Mohamed Ali Zdiri & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Abdulaziz Almalaq & Fatma Ben Salem & Hsan Hadj Abdallah & Ahmed Toumi, 2022. "Design and Analysis of Sliding-Mode Artificial Neural Network Control Strategy for Hybrid PV-Battery-Supercapacitor System," Energies, MDPI, vol. 15(11), pages 1-20, June.
    6. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    7. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    8. García-Villoria, Alberto & Domenech, Bruno & Ferrer-Martí, Laia & Juanpera, Marc & Pastor, Rafael, 2020. "Ad-hoc heuristic for design of wind-photovoltaic electrification systems, including management constraints," Energy, Elsevier, vol. 212(C).
    9. Spalding-Fecher, Randall. & Senatla, Mamahloko & Yamba, Francis & Lukwesa, Biness & Himunzowa, Grayson & Heaps, Charles & Chapman, Arthur & Mahumane, Gilberto & Tembo, Bernard & Nyambe, Imasiku, 2017. "Electricity supply and demand scenarios for the Southern African power pool," Energy Policy, Elsevier, vol. 101(C), pages 403-414.
    10. Michael Weber, 2018. "Burkina Faso Jobs Diagnostic," World Bank Publications - Reports 31033, The World Bank Group.
    11. Toopshekan, Ashkan & Abedian, Ali & Azizi, Arian & Ahmadi, Esmaeil & Vaziri Rad, Mohammad Amin, 2023. "Optimization of a CHP system using a forecasting dispatch and teaching-learning-based optimization algorithm," Energy, Elsevier, vol. 285(C).
    12. Toopshekan, Ashkan & Yousefi, Hossein & Astaraei, Fatemeh Razi, 2020. "Technical, economic, and performance analysis of a hybrid energy system using a novel dispatch strategy," Energy, Elsevier, vol. 213(C).
    13. Amole, Abraham Olatide & Owosibo, Rachael Abiola & Adewuyi, Oludamilare Bode & Oladipo, Stephen & Imarhiagbe, Nosagiagbon Owomano, 2024. "Comparative analysis of control strategies for solar photovoltaic/diesel power system for stand-alone applications," Renewable Energy, Elsevier, vol. 226(C).
    14. Falchetta, Giacomo & Stevanato, Nicolò & Moner-Girona, Magda & Mazzoni, Davide & Colombo, Emanuela & Hafner, Manfred, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," FEP: Future Energy Program 305213, Fondazione Eni Enrico Mattei (FEEM) > FEP: Future Energy Program.
    15. Kaldellis, J.K. & Meidanis, E. & Zafirakis, D., 2011. "Experimental energy analysis of a stand-alone photovoltaic-based water pumping installation," Applied Energy, Elsevier, vol. 88(12), pages 4556-4562.
    16. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    17. Adam Konto Kyari & Labaran Mohammed Lawal, 2021. "An Empirical Enquiry into Stakeholders Perception of Electricity Pricing Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 75-82.
    18. Katherine Calvin & Shonali Pachauri & Enrica De Cian & Ioanna Mouratiadou, 2014. "The Effect of African Growth on Future Global Energy, Emissions, and Regional Development," Working Papers 2014.28, Fondazione Eni Enrico Mattei.
    19. Andrés González-García & Pedro Ciller & Stephen Lee & Rafael Palacios & Fernando de Cuadra García & José Ignacio Pérez-Arriaga, 2022. "A Rising Role for Decentralized Solar Minigrids in Integrated Rural Electrification Planning? Large-Scale, Least-Cost, and Customer-Wise Design of Grid and Off-Grid Supply Systems in Uganda," Energies, MDPI, vol. 15(13), pages 1-31, June.
    20. Ahmed, Eihab E.E. & Demirci, Alpaslan, 2022. "Multi-stage and multi-objective optimization for optimal sizing of stand-alone photovoltaic water pumping systems," Energy, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:203:y:2023:i:c:p:601-611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.