IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v202y2023icp405-418.html
   My bibliography  Save this article

Design and experimental characterization of a solar cooker with a prismatic cooking chamber and adjustable panel reflectors

Author

Listed:
  • Aquilanti, Alessia
  • Tomassetti, Sebastiano
  • Muccioli, Matteo
  • Di Nicola, Giovanni

Abstract

In this work, a novel solar cooker with the cooking chamber shaped like a Newton prism was designed, constructed and tested. The device is characterized by ease of construction, use and transportation. It is made of common and inexpensive materials. The proposed cooker is able to track the sun during its use through wheels placed at its base and a manual system to vary the inclination of the reflective surfaces. Experimental tests were carried out to characterize its thermal and optical performances and evaluate the wind’s influence. In particular, two identical prototypes, one shielded from the wind and the other not, were simultaneously tested by tracking the reflective surfaces at optimal angles. Several tests were carried out without and with a load using water and glycerin as test fluids. The results showed that the solar cookers have good thermal performance even at medium-high temperatures. Both prototypes reached a stagnation temperature of about 137°C. The shielded cooker usually brought 2 kg of water from 40°C up to 90°C in about two hours and 2 kg of glycerin from 40°C up to 110°C in less than three hours. These times were slightly longer for the unshielded prototype.

Suggested Citation

  • Aquilanti, Alessia & Tomassetti, Sebastiano & Muccioli, Matteo & Di Nicola, Giovanni, 2023. "Design and experimental characterization of a solar cooker with a prismatic cooking chamber and adjustable panel reflectors," Renewable Energy, Elsevier, vol. 202(C), pages 405-418.
  • Handle: RePEc:eee:renene:v:202:y:2023:i:c:p:405-418
    DOI: 10.1016/j.renene.2022.11.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122017232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.11.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Rodrigues Ruivo, Celestino, 2022. "Experimental thermal performance evaluation of different configurations of Copenhagen solar cooker," Renewable Energy, Elsevier, vol. 184(C), pages 604-618.
    2. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Ruivo, Celestino Rodrigues, 2022. "Experimental characterization of the thermal performance of the Haines 2 solar cooker," Energy, Elsevier, vol. 257(C).
    4. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    5. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    6. Ruivo, Celestino Rodrigues & Apaolaza-Pagoaga, Xabier & Coccia, Gianluca & Carrillo-Andrés, Antonio, 2022. "Proposal of a non-linear curve for reporting the performance of solar cookers," Renewable Energy, Elsevier, vol. 191(C), pages 110-121.
    7. Karekezi, Stephen & Kithyoma, Waeni, 2002. "Renewable energy strategies for rural Africa: is a PV-led renewable energy strategy the right approach for providing modern energy to the rural poor of sub-Saharan Africa?," Energy Policy, Elsevier, vol. 30(11-12), pages 1071-1086, September.
    8. Lahkar, Pranab J. & Bhamu, Rajesh K. & Samdarshi, S.K., 2012. "Enabling inter-cooker thermal performance comparison based on cooker opto-thermal ratio (COR)," Applied Energy, Elsevier, vol. 99(C), pages 491-495.
    9. Sagade, Atul A. & Samdarshi, S.K. & Lahkar, P.J. & Sagade, Narayani A., 2020. "Experimental determination of the thermal performance of a solar box cooker with a modified cooking pot," Renewable Energy, Elsevier, vol. 150(C), pages 1001-1009.
    10. El-Sebaii, A.A. & Ibrahim, A., 2005. "Experimental testing of a box-type solar cooker using the standard procedure of cooking power," Renewable Energy, Elsevier, vol. 30(12), pages 1861-1871.
    11. Gudina Terefe Tucho & Sanderine Nonhebel, 2015. "Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia," Energies, MDPI, vol. 8(9), pages 1-19, September.
    12. Gianluca Coccia & Alessia Aquilanti & Sebastiano Tomassetti & Pio Francesco Muciaccia & Giovanni Di Nicola, 2021. "Experimental Analysis of Nucleation Triggering in a Thermal Energy Storage Based on Xylitol Used in a Portable Solar Box Cooker," Energies, MDPI, vol. 14(18), pages 1-21, September.
    13. Ruivo, Celestino Rodrigues & Apaolaza-Pagoaga, Xabier & Di Nicola, Giovanni & Carrillo-Andrés, Antonio, 2022. "On the use of experimental measured data to derive the linear regression usually adopted for determining the performance parameters of a solar cooker," Renewable Energy, Elsevier, vol. 181(C), pages 105-115.
    14. Mahavar, S. & Sengar, N. & Rajawat, P. & Verma, M. & Dashora, P., 2012. "Design development and performance studies of a novel Single Family Solar Cooker," Renewable Energy, Elsevier, vol. 47(C), pages 67-76.
    15. Ruivo, Celestino Rodrigues & Coccia, Gianluca & Di Nicola, Giovanni & Carrillo-Andrés, Antonio & Apaolaza-Pagoaga, Xabier, 2022. "Standardised power of solar cookers with a linear performance curve following the Hottel-Whillier-Bliss formulation," Renewable Energy, Elsevier, vol. 200(C), pages 1202-1210.
    16. Khalifa, A.M.A. & Taha, M.M.A. & Akyurt, M., 1985. "Solar cookers for outdoors and indoors," Energy, Elsevier, vol. 10(7), pages 819-829.
    17. Ruivo, Celestino Rodrigues & Carrillo-Andrés, Antonio & Apaolaza-Pagoaga, Xabier, 2021. "Experimental determination of the standardised power of a solar funnel cooker for low sun elevations," Renewable Energy, Elsevier, vol. 170(C), pages 364-374.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kashyap, S. Rahul & Pramanik, Santanu & Ravikrishna, R.V., 2023. "A review of solar, electric and hybrid cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Ruivo, Celestino Rodrigues & Coccia, Gianluca & Di Nicola, Giovanni & Carrillo-Andrés, Antonio & Apaolaza-Pagoaga, Xabier, 2022. "Standardised power of solar cookers with a linear performance curve following the Hottel-Whillier-Bliss formulation," Renewable Energy, Elsevier, vol. 200(C), pages 1202-1210.
    3. Ruivo, Celestino Rodrigues & Apaolaza-Pagoaga, Xabier & Coccia, Gianluca & Carrillo-Andrés, Antonio, 2022. "Proposal of a non-linear curve for reporting the performance of solar cookers," Renewable Energy, Elsevier, vol. 191(C), pages 110-121.
    4. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Selvaraj Balachandran & Jose Swaminathan, 2022. "Advances in Indoor Cooking Using Solar Energy with Phase Change Material Storage Systems," Energies, MDPI, vol. 15(22), pages 1-32, November.
    6. Al-Nehari, Hamoud A. & Mohammed, Mahmoud A. & Odhah, Abdulkarem A. & Al-attab, K.A. & Mohammed, Bakeel K. & Al-Habari, Abdulwahab M. & Al-Fahd, Nasr H., 2021. "Experimental and numerical analysis of tiltable box-type solar cooker with tracking mechanism," Renewable Energy, Elsevier, vol. 180(C), pages 954-965.
    7. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Ruivo, Celestino Rodrigues, 2022. "Experimental characterization of the thermal performance of the Haines 2 solar cooker," Energy, Elsevier, vol. 257(C).
    8. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    9. Tawfik, M.A. & Sagade, Atul A. & El-Sebaii, A.A. & Khallaf, A.M. & El-Shal, Hanan M. & Abd Allah, W.E., 2024. "Enabling sustainability in the decentralized energy sector through a solar cooker augmented with a bottom parabolic reflector: Performance modelling and 4E analyses," Energy, Elsevier, vol. 287(C).
    10. B C Anilkumar & Ranjith Maniyeri & S Anish, 2023. "Thermal performance assessment of a cylindrical box solar cooker fitted with decahedron outer reflector," Energy & Environment, , vol. 34(3), pages 493-516, May.
    11. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Ruivo, Celestino Rodrigues, 2021. "New approach for analysing the effect of minor and major solar cooker design changes: Influence of height trivet on the power of a funnel cooker," Renewable Energy, Elsevier, vol. 179(C), pages 2071-2085.
    12. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Rodrigues Ruivo, Celestino, 2022. "Experimental thermal performance evaluation of different configurations of Copenhagen solar cooker," Renewable Energy, Elsevier, vol. 184(C), pages 604-618.
    13. Vengadesan, Elumalai & Senthil, Ramalingam, 2021. "Experimental investigation of the thermal performance of a box type solar cooker using a finned cooking vessel," Renewable Energy, Elsevier, vol. 171(C), pages 431-446.
    14. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    15. Mahavar, S. & Sengar, N. & Dashora, P., 2017. "Analytical model for electric back-up power estimation of solar box type cookers," Energy, Elsevier, vol. 134(C), pages 871-881.
    16. Ruivo, Celestino Rodrigues & Apaolaza-Pagoaga, Xabier & Di Nicola, Giovanni & Carrillo-Andrés, Antonio, 2022. "On the use of experimental measured data to derive the linear regression usually adopted for determining the performance parameters of a solar cooker," Renewable Energy, Elsevier, vol. 181(C), pages 105-115.
    17. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    18. Mahavar, S. & Rajawat, P. & Punia, R.C. & Sengar, N. & Dashora, P., 2015. "Evaluating the optimum load range for box-type solar cookers," Renewable Energy, Elsevier, vol. 74(C), pages 187-194.
    19. Mulako D. Mukelabai & K. G. U. Wijayantha & Richard E. Blanchard, 2022. "Hydrogen for Cooking: A Review of Cooking Technologies, Renewable Hydrogen Systems and Techno-Economics," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    20. Mahavar, S. & Rajawat, P. & Marwal, V.K. & Punia, R.C. & Dashora, P., 2013. "Modeling and on-field testing of a Solar Rice Cooker," Energy, Elsevier, vol. 49(C), pages 404-412.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:202:y:2023:i:c:p:405-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.