IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v13y2024i2ne516.html
   My bibliography  Save this article

A comprehensive review of solar cooking systems

Author

Listed:
  • Mehmet Akif Ceviz
  • Burak Muratçobanoğlu
  • Emre Mandev
  • Faraz Afshari

Abstract

This work presents an extensive and thorough examination of solar cooking systems, offering a comprehensive overview of their design, functionality, and practical implications. Through a comprehensive review of existing literature and technological advancements, the paper highlights the various types of solar cooking methods and their respective benefits. The study delves into the environmental, social, and economic advantages of solar cooking systems, presenting their potential to reduce energy demands and cooking‐related challenges in diverse regions. By synthesizing a wide range of research, this review serves as a valuable resource for researchers, policymakers, and individuals interested in harnessing solar energy for sustainable and efficient cooking solutions. Additionally, this study contributes to the understanding and promotion of solar cooking as a viable and environmentally friendly alternative. It also analyzes why solar cooking systems have not become widespread and reveals the obstacles facing them. This article is categorized under: Sustainable Energy > Solar Energy

Suggested Citation

  • Mehmet Akif Ceviz & Burak Muratçobanoğlu & Emre Mandev & Faraz Afshari, 2024. "A comprehensive review of solar cooking systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(2), March.
  • Handle: RePEc:bla:wireae:v:13:y:2024:i:2:n:e516
    DOI: 10.1002/wene.516
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.516
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Abd-Elhady, M.S. & Abd-Elkerim, A.N.A. & Ahmed, Seif A. & Halim, M.A. & Abu-Oqual, Ahmed, 2020. "Study the thermal performance of solar cookers by using metallic wires and nanographene," Renewable Energy, Elsevier, vol. 153(C), pages 108-116.
    2. Aquilanti, Alessia & Tomassetti, Sebastiano & Muccioli, Matteo & Di Nicola, Giovanni, 2023. "Design and experimental characterization of a solar cooker with a prismatic cooking chamber and adjustable panel reflectors," Renewable Energy, Elsevier, vol. 202(C), pages 405-418.
    3. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    4. Vengadesan, Elumalai & Senthil, Ramalingam, 2021. "Experimental investigation of the thermal performance of a box type solar cooker using a finned cooking vessel," Renewable Energy, Elsevier, vol. 171(C), pages 431-446.
    5. Oliver Stoner & Jessica Lewis & Itzel Lucio Martínez & Sophie Gumy & Theo Economou & Heather Adair-Rohani, 2021. "Household cooking fuel estimates at global and country level for 1990 to 2030," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Edmonds, Ian, 2018. "Low cost realisation of a high temperature solar cooker," Renewable Energy, Elsevier, vol. 121(C), pages 94-101.
    7. Wang, Hai & Huang, Jin & Song, Mengjie & Yan, Jian, 2019. "Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker," Applied Energy, Elsevier, vol. 237(C), pages 70-82.
    8. Sagade, Atul A. & Samdarshi, S.K. & Lahkar, P.J. & Sagade, Narayani A., 2020. "Experimental determination of the thermal performance of a solar box cooker with a modified cooking pot," Renewable Energy, Elsevier, vol. 150(C), pages 1001-1009.
    9. Koshti, Bhupendra & Dev, Rahul & Bharti, Ajaya & Narayan, Audhesh, 2023. "Comparative performance evaluation of modified solar cookers for subtropical climate conditions," Renewable Energy, Elsevier, vol. 209(C), pages 505-515.
    10. Ruivo, Celestino Rodrigues & Coccia, Gianluca & Di Nicola, Giovanni & Carrillo-Andrés, Antonio & Apaolaza-Pagoaga, Xabier, 2022. "Standardised power of solar cookers with a linear performance curve following the Hottel-Whillier-Bliss formulation," Renewable Energy, Elsevier, vol. 200(C), pages 1202-1210.
    11. Bakirci, Kadir, 2021. "Prediction of diffuse radiation in solar energy applications: Turkey case study and compare with satellite data," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Jiménez-Navarro, Juan-Pablo & Rodrigues Ruivo, Celestino, 2024. "Experimental evaluation of the performance of new Copenhagen solar cooker configurations as a function of solar altitude angle," Renewable Energy, Elsevier, vol. 229(C).
    3. Kashyap, S. Rahul & Pramanik, Santanu & Ravikrishna, R.V., 2023. "A review of solar, electric and hybrid cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Selvaraj Balachandran & Jose Swaminathan, 2022. "Advances in Indoor Cooking Using Solar Energy with Phase Change Material Storage Systems," Energies, MDPI, vol. 15(22), pages 1-32, November.
    5. Aquilanti, Alessia & Tomassetti, Sebastiano & Muccioli, Matteo & Di Nicola, Giovanni, 2023. "Design and experimental characterization of a solar cooker with a prismatic cooking chamber and adjustable panel reflectors," Renewable Energy, Elsevier, vol. 202(C), pages 405-418.
    6. Thakur, Akshay & Kumar, Rajat & Dwivedi, Ankur & Goel, Varun, 2023. "Solar cooking technology in India: Identification and prioritization of potential challenges," Renewable Energy, Elsevier, vol. 219(P1).
    7. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Ruivo, Celestino Rodrigues, 2021. "New approach for analysing the effect of minor and major solar cooker design changes: Influence of height trivet on the power of a funnel cooker," Renewable Energy, Elsevier, vol. 179(C), pages 2071-2085.
    8. Palanikumar, G. & Shanmugan, S. & Chithambaram, V. & Gorjian, Shiva & Pruncu, Catalin I. & Essa, F.A. & Kabeel, A.E. & Panchal, Hitesh & Janarthanan, B. & Ebadi, Hossein & Elsheikh, Ammar H. & Selvara, 2021. "Thermal investigation of a solar box-type cooker with nanocomposite phase change materials using flexible thermography," Renewable Energy, Elsevier, vol. 178(C), pages 260-282.
    9. Fernando Antonanzas-Torres & Ruben Urraca & Camilo Andres Cortes Guerrero & Julio Blanco-Fernandez, 2021. "Solar E-Cooking with Low-Power Solar Home Systems for Sub-Saharan Africa," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    10. Al-Nehari, Hamoud A. & Mohammed, Mahmoud A. & Odhah, Abdulkarem A. & Al-attab, K.A. & Mohammed, Bakeel K. & Al-Habari, Abdulwahab M. & Al-Fahd, Nasr H., 2021. "Experimental and numerical analysis of tiltable box-type solar cooker with tracking mechanism," Renewable Energy, Elsevier, vol. 180(C), pages 954-965.
    11. Koshti, Bhupendra & Dev, Rahul & Bharti, Ajaya & Narayan, Audhesh, 2023. "Comparative performance evaluation of modified solar cookers for subtropical climate conditions," Renewable Energy, Elsevier, vol. 209(C), pages 505-515.
    12. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    13. Muthu Kumaran Gunasegaran & Md Hasanuzzaman & ChiaKwang Tan & Ab Halim Abu Bakar & Vignes Ponniah, 2023. "Energy Consumption, Energy Analysis, and Solar Energy Integration for Commercial Building Restaurants," Energies, MDPI, vol. 16(20), pages 1-26, October.
    14. Tawfik, M.A. & Sagade, Atul A. & El-Sebaii, A.A. & Khallaf, A.M. & El-Shal, Hanan M. & Abd Allah, W.E., 2024. "Enabling sustainability in the decentralized energy sector through a solar cooker augmented with a bottom parabolic reflector: Performance modelling and 4E analyses," Energy, Elsevier, vol. 287(C).
    15. B C Anilkumar & Ranjith Maniyeri & S Anish, 2023. "Thermal performance assessment of a cylindrical box solar cooker fitted with decahedron outer reflector," Energy & Environment, , vol. 34(3), pages 493-516, May.
    16. Ruivo, Celestino Rodrigues & Apaolaza-Pagoaga, Xabier & Coccia, Gianluca & Carrillo-Andrés, Antonio, 2022. "Proposal of a non-linear curve for reporting the performance of solar cookers," Renewable Energy, Elsevier, vol. 191(C), pages 110-121.
    17. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Rodrigues Ruivo, Celestino, 2022. "Experimental thermal performance evaluation of different configurations of Copenhagen solar cooker," Renewable Energy, Elsevier, vol. 184(C), pages 604-618.
    18. Yokoo, Hide-Fumi & Arimura, Toshi H. & Chattopadhyay, Mriduchhanda & Katayama, Hajime, 2023. "Subjective risk belief function in the field: Evidence from cooking fuel choices and health in India," Journal of Development Economics, Elsevier, vol. 161(C).
    19. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    20. Li, Xue & Lin, Cong & Wang, Yang & Zhao, Lingying & Duan, Na & Wu, Xudong, 2015. "Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 184-193.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:13:y:2024:i:2:n:e516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.