IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v202y2023icp1241-1247.html
   My bibliography  Save this article

Experimental and theoretical feasibility study of methanol application for Echium oil-based biodiesel production

Author

Listed:
  • Naraki, Mohamad mehdi
  • Parvasi, Payam
  • Jokar, Seyyed Mohammad
  • Iulianelli, Adolfo

Abstract

In this study, the effect of ultrasound waves on biodiesel production from methanol and Echium oil is evaluated experimentally under different operating conditions. A two-step esterification–transesterification process was applied to improve the biodiesel quality, and, in order to optimize the reaction conditions, the effect of variables such as methanol to oil molar ratio, KOH catalyst concentration and temperature were experimentally investigated. The results showed that the optimum biodiesel yield (97.2%) could be obtained at a catalyst concentration of 1.875% w.t, feed molar ratio equal to 9.65, and at 50 °C of operating temperature. The acid value, saponification numbers, iodine value, density, kinematic viscosity, fire point, cloud point and flash point were measured and compared with ASTM D6751 and EN 14214 standards. The results of the analysis showed that the produced biodiesel is a good alternative to fossil fuels. The results demonstrate that methanol and Echium Oil can be used as a proper feedstock for biofuel production. Furthermore, the kinetic study of transesterification is carried out for Echium oil production and the reaction rate constant and activation energy were determined. Finally, the sizing calculations and cost estimation of the Echium oil-based biodiesel production were investigated.

Suggested Citation

  • Naraki, Mohamad mehdi & Parvasi, Payam & Jokar, Seyyed Mohammad & Iulianelli, Adolfo, 2023. "Experimental and theoretical feasibility study of methanol application for Echium oil-based biodiesel production," Renewable Energy, Elsevier, vol. 202(C), pages 1241-1247.
  • Handle: RePEc:eee:renene:v:202:y:2023:i:c:p:1241-1247
    DOI: 10.1016/j.renene.2022.11.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122017700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.11.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seyyedeh Faezeh Mirab Haghighi & Payam Parvasi & Seyyed Mohammad Jokar & Angelo Basile, 2021. "Investigating the Effects of Ultrasonic Frequency and Membrane Technology on Biodiesel Production from Chicken Waste," Energies, MDPI, vol. 14(8), pages 1-21, April.
    2. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat Teong & Khayoon, Muataz Sh., 2012. "Intensification of biodiesel production via ultrasonic-assisted process: A critical review on fundamentals and recent development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4574-4587.
    3. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moradkhani, Mohammad Amin & Hosseini, Seyyed Hossein & Song, Mengjie & Teimoori, Khalil, 2024. "Comprehensive data-driven methods for estimating the thermal conductivity of biodiesels and their blends with alcohols and fossil diesels," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oza, Suvik & Kodgire, Pravin & Kachhwaha, Surendra Singh & Lam, Man Kee & Yusup, Suzana & Chai, Yee Ho & Rokhum, Samuel Lalthazuala, 2024. "A review on sustainable and scalable biodiesel production using ultra-sonication technology," Renewable Energy, Elsevier, vol. 226(C).
    2. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    3. Wongwuttanasatian, Tanakorn & Jookjantra, Kittichai, 2020. "Effect of dual-frequency pulsed ultrasonic excitation and catalyst size for biodiesel production," Renewable Energy, Elsevier, vol. 152(C), pages 1220-1226.
    4. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    5. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2013. "Ultrasound-assisted transesterification of crude Jatropha oil using alumina-supported heteropolyacid catalyst," Applied Energy, Elsevier, vol. 105(C), pages 380-388.
    6. Ekaterina S. Titova, 2019. "Biofuel Application as a Factor of Sustainable Development Ensuring: The Case of Russia," Energies, MDPI, vol. 12(20), pages 1-30, October.
    7. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    8. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2014. "Transesterification of crude Jatropha oil by activated carbon-supported heteropolyacid catalyst in an ultrasound-assisted reactor system," Renewable Energy, Elsevier, vol. 62(C), pages 10-17.
    9. Klein, Bruno Colling & Chagas, Mateus Ferreira & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Maciel Filho, Rubens, 2019. "Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): A case study for sugarcane mills and integrated sugarcane-microalgae biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Asgharzadehahmadi, Seyedali & Abdul Raman, Abdul Aziz & Parthasarathy, Rajarathinam & Sajjadi, Baharak, 2016. "Sonochemical reactors: Review on features, advantages and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 302-314.
    11. Park, Ji-Yeon & Kim, Min-Cheol & Cheng, Jun & Yang, Weijuan & Kim, Deog-Keun, 2020. "Extraction of microalgal oil from Nannochloropsis oceanica by potassium hydroxide-assisted solvent extraction for heterogeneous transesterification," Renewable Energy, Elsevier, vol. 162(C), pages 2056-2065.
    12. Laura Vélez-Landa & Héctor Ricardo Hernández-De León & Yolanda Del Carmen Pérez-Luna & Sabino Velázquez-Trujillo & Joel Moreira-Acosta & Roberto Berrones-Hernández & Yazmin Sánchez-Roque, 2021. "Influence of Light Intensity and Photoperiod on the Photoautotrophic Growth and Lipid Content of the Microalgae Verrucodesmus verrucosus in a Photobioreactor," Sustainability, MDPI, vol. 13(12), pages 1-11, June.
    13. Małgorzata Hawrot-Paw & Adam Koniuszy & Małgorzata Gałczyńska, 2020. "Sustainable Production of Monoraphidium Microalgae Biomass as a Source of Bioenergy," Energies, MDPI, vol. 13(22), pages 1-13, November.
    14. Tayari, Sara & Abedi, Reza & Rahi, Abbas, 2020. "Comparative assessment of engine performance and emissions fueled with three different biodiesel generations," Renewable Energy, Elsevier, vol. 147(P1), pages 1058-1069.
    15. Ming-Chien Hsiao & Peir-Horng Liao & Kuo-Chou Yang & Nguyen Vu Lan & Shuhn-Shyurng Hou, 2022. "Enhanced Biodiesel Synthesis via a Homogenizer-Assisted Two-Stage Conversion Process Using Waste Edible Oil as Feedstock," Energies, MDPI, vol. 15(23), pages 1-15, November.
    16. A Shalmashi & F Khodadadi, 2019. "Ultrasound-assisted synthesis of biodiesel from peanut oil by using response surface methodology," Energy & Environment, , vol. 30(2), pages 272-291, March.
    17. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    18. Sudalai, S & Rupesh, K J & Devanesan, M.G & Arumugam, A, 2023. "A critical review of Madhuca indica as an efficient biodiesel producer: Towards sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Oh Kyung Choi & Zachary Hendren & Ki Young Park & Jae-Kon Kim & Jo Yong Park & Ahjeong Son & Jae Woo Lee, 2019. "Characterization and Recovery of In Situ Transesterifiable Lipids (TLs) as Potential Biofuel Feedstock from Sewage Sludge Obtained from Various Sewage Treatment Plants (STPs)," Energies, MDPI, vol. 12(20), pages 1-12, October.
    20. Cai, Dongren & Zhan, Guowu & Xiao, Jingran & Zhou, Shu-Feng & Qiu, Ting, 2021. "Design and synthesis of novel amphipathic ionic liquids for biodiesel production from soapberry oil," Renewable Energy, Elsevier, vol. 168(C), pages 779-790.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:202:y:2023:i:c:p:1241-1247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.