IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v198y2022icp380-388.html
   My bibliography  Save this article

Development of a general sound source model for wind farm application

Author

Listed:
  • Shen, Wen Zhong
  • Yunakov, Nikolay
  • Cao, Jiu Fa
  • Zhu, Wei Jun

Abstract

With the confidentiality of turbine blade geometry, wind farm developers and/or end-users have difficulties to optimize their wind turbine operations and wind farm layouts with respect to noise as existing sound source models rely on detailed blade geometry of wind turbines. This paper presents a new methodology of modeling wind turbine noise that does not need to access the details of blade geometry. The new methodology consists of two steps: First, the candidate wind turbine is approached by up/down scaling from a known wind turbine (for example the National Renewable Energy Laboratory 5 MW wind turbine) according to its operational conditions and limited data provided from the manufacturer; then a sound source model (for example Amiet's model) is applied to calculate the sound pressure level at needed positions. The developed methodology is validated against wind turbine noise measurements for a 4 MW wind turbine with unknown blade geometry; good agreement was found, with an averaged difference of 1.2 dB for various wind conditions under neutral, stable and unstable atmospheric thermostability. By combining with a sound propagation model, the new methodology can be used for designing and controlling wind farms.

Suggested Citation

  • Shen, Wen Zhong & Yunakov, Nikolay & Cao, Jiu Fa & Zhu, Wei Jun, 2022. "Development of a general sound source model for wind farm application," Renewable Energy, Elsevier, vol. 198(C), pages 380-388.
  • Handle: RePEc:eee:renene:v:198:y:2022:i:c:p:380-388
    DOI: 10.1016/j.renene.2022.07.161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Wei Jun & Shen, Wen Zhong & Barlas, Emre & Bertagnolio, Franck & Sørensen, Jens Nørkær, 2018. "Wind turbine noise generation and propagation modeling at DTU Wind Energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 133-150.
    2. Cao, Jiufa & Nyborg, Camilla Marie & Feng, Ju & Hansen, Kurt S. & Bertagnolio, Franck & Fischer, Andreas & Sørensen, Thomas & Shen, Wen Zhong, 2022. "A new multi-fidelity flow-acoustics simulation framework for wind farm application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mittal, Prateek & Christopoulos, Giorgos & Subramanian, Sriram, 2024. "Energy enhancement through noise minimization using acoustic metamaterials in a wind farm," Renewable Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Jiufa & Nyborg, Camilla Marie & Feng, Ju & Hansen, Kurt S. & Bertagnolio, Franck & Fischer, Andreas & Sørensen, Thomas & Shen, Wen Zhong, 2022. "A new multi-fidelity flow-acoustics simulation framework for wind farm application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Shen, Wen Zhong & Zhu, Wei Jun & Barlas, Emre & Li, Ye, 2019. "Advanced flow and noise simulation method for wind farm assessment in complex terrain," Renewable Energy, Elsevier, vol. 143(C), pages 1812-1825.
    3. Xinkai Li & Ke Yang & Hao Hu & Xiaodong Wang & Shun Kang, 2019. "Effect of Tailing-Edge Thickness on Aerodynamic Noise for Wind Turbine Airfoil," Energies, MDPI, vol. 12(2), pages 1-25, January.
    4. Mounir Alliche & Redha Rebhi & Noureddine Kaid & Younes Menni & Houari Ameur & Mustafa Inc & Hijaz Ahmad & Giulio Lorenzini & Ayman A. Aly & Sayed K. Elagan & Bassem F. Felemban, 2021. "Estimation of the Wind Energy Potential in Various North Algerian Regions," Energies, MDPI, vol. 14(22), pages 1-13, November.
    5. Li, Jian & Liu, Ranhui & Yuan, Peng & Pei, Yanli & Cao, Renjing & Wang, Gang, 2020. "Numerical simulation and application of noise for high-power wind turbines with double blades based on large eddy simulation model," Renewable Energy, Elsevier, vol. 146(C), pages 1682-1690.
    6. Merino-Martínez, Roberto & Pieren, Reto & Schäffer, Beat, 2021. "Holistic approach to wind turbine noise: From blade trailing-edge modifications to annoyance estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Lüth, Alexandra & Werner, Yannick & Egging-Bratseth, Ruud & Kazempour, Jalal, 2024. "Electrolysis as a flexibility resource on energy islands: The case of the North Sea," Energy Policy, Elsevier, vol. 185(C).
    8. Botero-Bolívar, Laura & Marino, Oscar A. & Venner, Cornelis H. & de Santana, Leandro D. & Ferrer, Esteban, 2024. "Low-cost wind turbine aeroacoustic predictions using actuator lines," Renewable Energy, Elsevier, vol. 227(C).
    9. Hui Tang & Yulong Lei & Xingzhong Li, 2019. "An Acoustic Source Model for Applications in Low Mach Number Turbulent Flows, Such as a Large-Scale Wind Turbine Blade," Energies, MDPI, vol. 12(23), pages 1-18, December.
    10. Makarewicz, R. & Gołebiewski, R., 2019. "The Influence of a low level jet on the thumps generated by a wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 337-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:198:y:2022:i:c:p:380-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.